DeformConv_cuda.cu 34.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
/*!
 ******************* BEGIN Caffe Copyright Notice and Disclaimer
 *****************
 *
 * COPYRIGHT
 *
 * All contributions by the University of California:
 * Copyright (c) 2014-2017 The Regents of the University of California (Regents)
 * All rights reserved.
 *
 * All other contributions:
 * Copyright (c) 2014-2017, the respective contributors
 * All rights reserved.
 *
 * Caffe uses a shared copyright model: each contributor holds copyright over
 * their contributions to Caffe. The project versioning records all such
 * contribution and copyright details. If a contributor wants to further mark
 * their specific copyright on a particular contribution, they should indicate
 * their copyright solely in the commit message of the change when it is
 * committed.
 *
 * LICENSE
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 *AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 *IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
 *FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 *DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 *SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 *OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * CONTRIBUTION AGREEMENT
 *
 * By contributing to the BVLC/caffe repository through pull-request, comment,
 * or otherwise, the contributor releases their content to the
 * license and copyright terms herein.
 *
 ***************** END Caffe Copyright Notice and Disclaimer
 *********************
 *
 * Copyright (c) 2018 Microsoft
 * Licensed under The MIT License [see LICENSE for details]
 * \file modulated_deformable_im2col.cuh
 * \brief Function definitions of converting an image to
 * column matrix based on kernel, padding, dilation, and offset.
 * These functions are mainly used in deformable convolution operators.
 * \ref: https://arxiv.org/abs/1703.06211
 * \author Yuwen Xiong, Haozhi Qi, Jifeng Dai, Xizhou Zhu, Han Hu, Dazhi Cheng
 */

// modified from
// https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda_kernel.cu

// modified from
// https://github.com/open-mmlab/mmdetection/blob/master/mmdet/ops/dcn/src/deform_conv_cuda.cpp

#include <ATen/ATen.h>
#include <ATen/TensorUtils.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
73
#include <THC/THCAtomics.cuh>
74
75
76
77
78
79
80
81
82

#include "cuda_helpers.h"

#include <cmath>
#include <iostream>
#include <tuple>

const int kMaxParallelImgs = 32;

83
84
85
86
87
88
89
90
91
92
93
inline unsigned int GET_THREADS() {
  if (at::cuda::getCurrentDeviceProperties()->major >= 6) {
    return 1024;
  }
  return 512;
}

inline unsigned int GET_BLOCKS(const unsigned int THREADS, const unsigned int N) {
  unsigned int kMaxGridNum =
      at::cuda::getCurrentDeviceProperties()->maxGridSize[0];
  return std::min(kMaxGridNum, (N + THREADS - 1) / THREADS);
94
95
96
97
98
}

template <typename scalar_t>
__device__ scalar_t bilinear_interpolate(
    const scalar_t* in,
99
100
    int height,
    int width,
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
    scalar_t h,
    scalar_t w) {
  if (h <= -1 || height <= h || w <= -1 || width <= w) {
    return 0;
  }

  int h_low = floor(h);
  int w_low = floor(w);
  int h_high = h_low + 1;
  int w_high = w_low + 1;

  scalar_t lh = h - h_low;
  scalar_t lw = w - w_low;
  scalar_t hh = 1 - lh, hw = 1 - lw;

  scalar_t v1 = 0;
  if (h_low >= 0 && w_low >= 0)
    v1 = in[h_low * width + w_low];
  scalar_t v2 = 0;
  if (h_low >= 0 && w_high <= width - 1)
    v2 = in[h_low * width + w_high];
  scalar_t v3 = 0;
  if (h_high <= height - 1 && w_low >= 0)
    v3 = in[h_high * width + w_low];
  scalar_t v4 = 0;
  if (h_high <= height - 1 && w_high <= width - 1)
    v4 = in[h_high * width + w_high];

  scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;

  scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
  return val;
}

template <typename scalar_t>
__global__ void deformable_im2col_gpu_kernel(
137
    int n,
138
139
    const scalar_t* input_ptr,
    const scalar_t* offset_ptr,
140
    const scalar_t* mask_ptr,
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    int height,
    int width,
    int weight_h,
    int weight_w,
    int pad_h,
    int pad_w,
    int stride_h,
    int stride_w,
    int dil_h,
    int dil_w,
    int batch_sz,
    int n_in_channels,
    int n_offset_grps,
    int out_h,
    int out_w,
156
    bool use_mask,
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    scalar_t* columns_ptr) {
  CUDA_1D_KERNEL_LOOP(index, n) {
    const int out_x = index % out_w;
    const int out_y = (index / out_w) % out_h;
    const int out_b = (index / (out_w * out_h)) % batch_sz;
    const int in_c = index / (out_w * out_h * batch_sz);
    const int out_c = in_c * weight_h * weight_w;

    int c_per_offset_grp = n_in_channels / n_offset_grps;
    const int grp_idx = in_c / c_per_offset_grp;

    columns_ptr +=
        (out_c * (batch_sz * out_h * out_w) + out_b * (out_h * out_w) +
         out_y * out_w + out_x);

    input_ptr +=
        (out_b * (n_in_channels * height * width) + in_c * (height * width));

    offset_ptr += (out_b * n_offset_grps + grp_idx) * 2 * weight_h * weight_w *
        out_h * out_w;

178
179
180
181
182
    if (use_mask) {
      mask_ptr += (out_b * n_offset_grps + grp_idx) * weight_h * weight_w *
          out_h * out_w;
    }

183
184
    for (int i = 0; i < weight_h; ++i) {
      for (int j = 0; j < weight_w; ++j) {
185
186
187
188
189
190
191
192
193
        const int mask_idx = i * weight_w + j;
        const int offset_idx = 2 * mask_idx;

        scalar_t mask_value = 1;
        if (use_mask) {
          mask_value =
              mask_ptr[mask_idx * (out_h * out_w) + out_y * out_w + out_x];
        }

194
195
196
197
198
199
        const scalar_t offset_h =
            offset_ptr[offset_idx * (out_h * out_w) + out_y * out_w + out_x];
        const scalar_t offset_w = offset_ptr
            [(offset_idx + 1) * (out_h * out_w) + out_y * out_w + out_x];
        const scalar_t y = (out_y * stride_h - pad_h) + i * dil_h + offset_h;
        const scalar_t x = (out_x * stride_w - pad_w) + j * dil_w + offset_w;
200
201
        *columns_ptr =
            mask_value * bilinear_interpolate(input_ptr, height, width, y, x);
202
203
204
205
206
207
208
        columns_ptr += batch_sz * out_h * out_w;
      }
    }
  }
}

static void deformable_im2col(
209
210
    const at::Tensor& input,
    const at::Tensor& data_offset,
211
    const at::Tensor& data_mask,
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    int n_in_channels,
    int height,
    int width,
    int weight_h,
    int weight_w,
    int pad_h,
    int pad_w,
    int stride_h,
    int stride_w,
    int dil_h,
    int dil_w,
    int out_h,
    int out_w,
    int parallel_imgs,
    int deformable_group,
227
    bool use_mask,
228
229
230
    at::Tensor data_col) {
  int num_kernels = n_in_channels * out_h * out_w * parallel_imgs;

231
232
233
  const unsigned int threads = GET_THREADS();
  const unsigned int blocks = GET_BLOCKS(threads, num_kernels);

234
235
236
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
      input.scalar_type(), "deformable_im2col_gpu", ([&] {
        deformable_im2col_gpu_kernel<<<
237
238
            blocks,
            threads>>>(
239
240
241
            num_kernels,
            input.data_ptr<scalar_t>(),
            data_offset.data_ptr<scalar_t>(),
242
            data_mask.data_ptr<scalar_t>(),
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
            height,
            width,
            weight_h,
            weight_w,
            pad_h,
            pad_w,
            stride_h,
            stride_w,
            dil_h,
            dil_w,
            parallel_imgs,
            n_in_channels,
            deformable_group,
            out_h,
            out_w,
258
            use_mask,
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
            data_col.data_ptr<scalar_t>());
      }));

  cudaError_t err = cudaGetLastError();
  if (err != cudaSuccess) {
    printf("error in deformable_im2col: %s\n", cudaGetErrorString(err));
  }
}

static int get_greatest_divisor_below_bound(int n, int bound) {
  for (int k = bound; k > 1; --k) {
    if (n % k == 0) {
      return k;
    }
  }
  return 1;
}

at::Tensor DeformConv2d_forward_cuda(
    const at::Tensor& input_param,
    const at::Tensor& weight_param,
    const at::Tensor& offset_param,
281
    const at::Tensor& mask_param,
282
283
284
285
286
287
288
289
    const at::Tensor& bias_param,
    int64_t stride_h,
    int64_t stride_w,
    int64_t pad_h,
    int64_t pad_w,
    int64_t dil_h,
    int64_t dil_w,
    int64_t n_weight_grps,
290
291
    int64_t n_offset_grps,
    bool use_mask) {
292
293
294
  at::Tensor input = input_param.contiguous();
  at::Tensor offset = offset_param.contiguous();
  at::Tensor weight = weight_param.contiguous();
295
  at::Tensor mask = mask_param.contiguous();
296
  at::Tensor bias = bias_param.contiguous();
297
298
299

  TORCH_CHECK(input.ndimension() == 4);
  TORCH_CHECK(offset.ndimension() == 4);
300
  TORCH_CHECK(!use_mask || mask.ndimension() == 4);
301
  TORCH_CHECK(weight.ndimension() == 4);
302
  TORCH_CHECK(input.is_cuda(), "input must be a CUDA tensor");
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

  at::DeviceGuard guard(input.device());

  int batch_sz = input.size(0);
  int in_channels = input.size(1);
  int in_h = input.size(2);
  int in_w = input.size(3);

  int n_parallel_imgs =
      get_greatest_divisor_below_bound(batch_sz, kMaxParallelImgs);

  int out_channels = weight.size(0);
  int weight_h = weight.size(2);
  int weight_w = weight.size(3);

  int ker_h = dil_h * (weight_h - 1) + 1;
  int ker_w = dil_w * (weight_w - 1) + 1;
  int out_h = ((in_h + 2 * pad_h - ker_h) / stride_h) + 1;
  int out_w = ((in_w + 2 * pad_w - ker_w) / stride_w) + 1;

  TORCH_CHECK(
      weight_h > 0 && weight_w > 0,
      "weight_h: ",
      weight_h,
      " weight_w: ",
      weight_w);
  TORCH_CHECK(
      stride_h > 0 && stride_w > 0,
      "stride_h: ",
      stride_h,
      " stride_w: ",
      stride_w);
  TORCH_CHECK(pad_h >= 0 && pad_w >= 0, "pad_h: ", pad_h, " pad_w: ", pad_w);
  TORCH_CHECK(dil_h > 0 && dil_w > 0, "dil_h: ", dil_h, " dil_w: ", dil_w);

  TORCH_CHECK(weight.size(1) * n_weight_grps == input.size(1));
  TORCH_CHECK(weight.size(0) % n_weight_grps == 0);
  TORCH_CHECK(
      (offset.size(1) == n_offset_grps * 2 * weight_h * weight_w),
342
      "offset.shape[1] is not valid: got: ",
343
344
345
      offset.size(1),
      " expected: ",
      n_offset_grps * 2 * weight_h * weight_w);
346
347
348
349
350
351
  TORCH_CHECK(
      (!use_mask || mask.size(1) == n_offset_grps * weight_h * weight_w),
      "mask.shape[1] is not valid: got: ",
      mask.size(1),
      " expected: ",
      n_offset_grps * weight_h * weight_w);
352
353
354
355
  TORCH_CHECK(input.size(1) % n_offset_grps == 0);

  TORCH_CHECK(
      (offset.size(0) == input.size(0)), "invalid batch size of offset");
356
357
358
359
360
361
362
363
364
365
366
367
  TORCH_CHECK(
      (offset.size(2) == out_h && offset.size(3) == out_w),
      "offset output dims: (",
      offset.size(2),
      ", ",
      offset.size(3),
      ") - ",
      "computed output dims: (",
      out_h,
      ", ",
      out_w,
      ")");
368
369
370
371
372
373
374
375
376
377
378
379
380
  TORCH_CHECK((mask.size(0) == input.size(0)), "invalid batch size of mask");
  TORCH_CHECK(
      (!use_mask || (mask.size(2) == out_h && mask.size(3) == out_w)),
      "mask output dims: (",
      mask.size(2),
      ", ",
      mask.size(3),
      ") - ",
      "computed output dims: (",
      out_h,
      ", ",
      out_w,
      ")");
381
382
383
384
385
386
387
388
  TORCH_CHECK(
      out_h > 0 && out_w > 0,
      "Calculated output size too small - out_h: ",
      out_h,
      " out_w: ",
      out_w);

  auto out = at::zeros({batch_sz, out_channels, out_h, out_w}, input.options());
389
390
391
  if (batch_sz == 0) {
    return out;
  }
392
393
394
395
396
397
398
399
400

  // Separate batches into blocks
  out = out.view({batch_sz / n_parallel_imgs,
                  n_parallel_imgs,
                  out_channels,
                  out_h,
                  out_w});
  input = input.view(
      {batch_sz / n_parallel_imgs, n_parallel_imgs, in_channels, in_h, in_w});
401

402
403
404
405
406
  offset = offset.view({batch_sz / n_parallel_imgs,
                        n_parallel_imgs,
                        n_offset_grps * 2 * weight_h * weight_w,
                        out_h,
                        out_w});
407
408
409
410
411
412
413
414
415

  if (use_mask) {
    mask = mask.view({batch_sz / n_parallel_imgs,
                      n_parallel_imgs,
                      n_offset_grps * weight_h * weight_w,
                      out_h,
                      out_w});
  }

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
  at::Tensor out_buf = at::zeros(
      {batch_sz / n_parallel_imgs,
       out_channels,
       n_parallel_imgs * out_h,
       out_w},
      out.options());

  // Separate channels into convolution groups
  out_buf = out_buf.view({out_buf.size(0),
                          n_weight_grps,
                          out_buf.size(1) / n_weight_grps,
                          out_buf.size(2),
                          out_buf.size(3)});
  weight = weight.view({n_weight_grps,
                        weight.size(0) / n_weight_grps,
                        weight.size(1),
                        weight.size(2),
                        weight.size(3)});

  // Sample points and perform convolution
  auto columns = at::zeros(
      {in_channels * weight_h * weight_w, n_parallel_imgs * out_h * out_w},
      input.options());
  for (int b = 0; b < batch_sz / n_parallel_imgs; b++) {
    deformable_im2col(
        input[b],
        offset[b],
443
        mask[b],
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
        in_channels,
        in_h,
        in_w,
        weight_h,
        weight_w,
        pad_h,
        pad_w,
        stride_h,
        stride_w,
        dil_h,
        dil_w,
        out_h,
        out_w,
        n_parallel_imgs,
        n_offset_grps,
459
        use_mask,
460
461
462
463
464
465
466
467
468
469
        columns);

    columns = columns.view(
        {n_weight_grps, columns.size(0) / n_weight_grps, columns.size(1)});
    for (int g = 0; g < n_weight_grps; g++) {
      out_buf[b][g] = out_buf[b][g]
                          .flatten(1)
                          .addmm_(weight[g].flatten(1), columns[g])
                          .view_as(out_buf[b][g]);
    }
470
471
    columns =
        columns.view({columns.size(0) * columns.size(1), columns.size(2)});
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
  }

  out_buf = out_buf.view({batch_sz / n_parallel_imgs,
                          out_channels,
                          n_parallel_imgs,
                          out_h,
                          out_w});
  out_buf.transpose_(1, 2);
  out.copy_(out_buf);
  out = out.view({batch_sz, out_channels, out_h, out_w});

  return out + bias.view({1, out_channels, 1, 1});
}

template <typename scalar_t>
__global__ void deformable_col2im_gpu_kernel(
488
    int n,
489
490
    const scalar_t* col,
    const scalar_t* offset_ptr,
491
    const scalar_t* mask_ptr,
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
    int channels,
    int height,
    int width,
    int kernel_h,
    int kernel_w,
    int pad_h,
    int pad_w,
    int stride_h,
    int stride_w,
    int dilation_h,
    int dilation_w,
    int batch_sz,
    int n_offset_grps,
    int out_h,
    int out_w,
507
    bool use_mask,
508
509
510
511
512
513
514
515
516
517
518
519
520
521
    scalar_t* grad_im) {
  CUDA_1D_KERNEL_LOOP(index, n) {
    const int out_x = index % out_w;
    const int out_y = (index / out_w) % out_h;
    const int b = (index / (out_w * out_h)) % batch_sz;
    const int j = (index / (out_w * out_h * batch_sz)) % kernel_w;
    const int i = (index / (out_w * out_h * batch_sz * kernel_w)) % kernel_h;
    const int c = index / (out_w * out_h * batch_sz * kernel_w * kernel_h);

    int c_per_offset_grp = channels / n_offset_grps;
    const int offset_grp = c / c_per_offset_grp;

    offset_ptr += (b * n_offset_grps + offset_grp) * 2 * kernel_h * kernel_w *
        out_h * out_w;
522
523
524
525
526
527
528
529
530
531
532
533

    if (use_mask) {
      mask_ptr += (b * n_offset_grps + offset_grp) * kernel_h * kernel_w *
          out_h * out_w;
    }

    const int mask_idx = i * kernel_w + j;
    const int offset_idx = 2 * mask_idx;

    const int offset_h_ptr = ((offset_idx)*out_h + out_y) * out_w + out_x;
    const int offset_w_ptr = ((offset_idx + 1) * out_h + out_y) * out_w + out_x;

534
535
    const scalar_t offset_h = offset_ptr[offset_h_ptr];
    const scalar_t offset_w = offset_ptr[offset_w_ptr];
536
537
538
539
540
541

    scalar_t mask_value = 1;
    if (use_mask) {
      mask_value = mask_ptr[(mask_idx * out_h + out_y) * out_w + out_x];
    }

542
543
544
545
546
547
548
549
550
551
552
    const scalar_t y = (out_y * stride_h - pad_h) + i * dilation_h + offset_h;
    const scalar_t x = (out_x * stride_w - pad_w) + j * dilation_w + offset_w;

    for (int dy = -1; dy <= 1; dy++) {
      for (int dx = -1; dx <= 1; dx++) {
        int yp = int(y) + dy;
        int xp = int(x) + dx;
        if (0 <= yp && yp < height && 0 <= xp && xp < width &&
            std::abs(y - yp) < 1 && std::abs(x - xp) < 1) {
          int grad_pos = ((b * channels + c) * height + yp) * width + xp;
          scalar_t weight = (1 - std::abs(y - yp)) * (1 - std::abs(x - xp));
553
          atomicAdd(grad_im + grad_pos, mask_value * weight * col[index]);
554
555
556
557
558
559
560
        }
      }
    }
  }
}

static void compute_grad_input(
561
562
    const at::Tensor& columns,
    const at::Tensor& offset,
563
    const at::Tensor& mask,
564
565
566
567
568
569
570
571
572
573
574
575
576
    int channels,
    int height,
    int width,
    int weight_h,
    int weight_w,
    int pad_h,
    int pad_w,
    int stride_h,
    int stride_w,
    int dilation_h,
    int dilation_w,
    int parallel_imgs,
    int n_offset_grps,
577
    bool use_mask,
578
579
580
581
582
583
584
585
    at::Tensor grad_im) {
  int out_h =
      (height + 2 * pad_h - (dilation_h * (weight_h - 1) + 1)) / stride_h + 1;
  int out_w =
      (width + 2 * pad_w - (dilation_w * (weight_w - 1) + 1)) / stride_w + 1;
  int num_kernels =
      channels * weight_h * weight_w * out_h * out_w * parallel_imgs;

586
587
588
  const unsigned int threads = GET_THREADS();
  const unsigned int blocks = GET_BLOCKS(threads, num_kernels);

589
590
591
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
      columns.scalar_type(), "deformable_col2im_gpu", ([&] {
        deformable_col2im_gpu_kernel<<<
592
593
            blocks,
            threads>>>(
594
595
596
            num_kernels,
            columns.data_ptr<scalar_t>(),
            offset.data_ptr<scalar_t>(),
597
            mask.data_ptr<scalar_t>(),
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
            channels,
            height,
            width,
            weight_h,
            weight_w,
            pad_h,
            pad_w,
            stride_h,
            stride_w,
            dilation_h,
            dilation_w,
            parallel_imgs,
            n_offset_grps,
            out_h,
            out_w,
613
            use_mask,
614
615
616
617
618
619
620
621
622
623
624
625
            grad_im.data_ptr<scalar_t>());
      }));

  cudaError_t err = cudaGetLastError();
  if (err != cudaSuccess) {
    printf("error in compute_grad_input: %s\n", cudaGetErrorString(err));
  }
}

template <typename scalar_t>
__device__ scalar_t get_coordinate_weight(
    const scalar_t* im_data,
626
627
    int height,
    int width,
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
    scalar_t y,
    scalar_t x,
    bool is_y_direction) {
  int y_l = floor(y);
  int x_l = floor(x);
  int y_h = y_l + 1;
  int x_h = x_l + 1;

  bool valid_y_l = 0 <= y_l && y_l < height;
  bool valid_y_h = 0 <= y_h && y_h < height;
  bool valid_x_l = 0 <= x_l && x_l < width;
  bool valid_x_h = 0 <= x_h && x_h < width;

  scalar_t zero = 0;
  scalar_t v_yx = (valid_y_l && valid_x_l) ? im_data[y_l * width + x_l] : zero;
  scalar_t v_yX = (valid_y_l && valid_x_h) ? im_data[y_l * width + x_h] : zero;
  scalar_t v_Yx = (valid_y_h && valid_x_l) ? im_data[y_h * width + x_l] : zero;
  scalar_t v_YX = (valid_y_h && valid_x_h) ? im_data[y_h * width + x_h] : zero;

  if (is_y_direction) {
    scalar_t dx = x - x_l;
    return dx * (v_YX - v_yX) + (1 - dx) * (v_Yx - v_yx);
  } else {
    scalar_t dy = y - y_l;
    return dy * (v_YX - v_Yx) + (1 - dy) * (v_yX - v_yx);
  }
}

template <typename scalar_t>
__global__ void deformable_col2im_coord_gpu_kernel(
658
    int n,
659
660
661
    const scalar_t* col_ptr,
    const scalar_t* im_ptr,
    const scalar_t* offset_ptr,
662
    const scalar_t* mask_ptr,
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
    int channels,
    int height,
    int width,
    int weight_h,
    int weight_w,
    int pad_h,
    int pad_w,
    int stride_h,
    int stride_w,
    int dilation_h,
    int dilation_w,
    int batch_sz,
    int offset_channels,
    int n_offset_grps,
    int out_h,
    int out_w,
679
680
681
    const bool use_mask,
    scalar_t* grad_offset,
    scalar_t* grad_mask) {
682
  CUDA_1D_KERNEL_LOOP(index, n) {
683
684
685
    scalar_t grad_offset_val = 0;
    scalar_t grad_mask_val = 0;

686
687
    int w = index % out_w;
    int h = (index / out_w) % out_h;
688
689
    int w_w = (index / (out_w * out_h * 2)) % weight_w;
    int w_h = (index / (out_w * out_h * 2 * weight_w)) % weight_h;
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
    int c = (index / (out_w * out_h)) % offset_channels;
    int b = index / (out_w * out_h * offset_channels);

    const int offset_grp = c / (2 * weight_h * weight_w);
    const int col_step = weight_h * weight_w;

    int c_per_offset_grp = channels / n_offset_grps;

    col_ptr += offset_grp * c_per_offset_grp * weight_h * weight_w * batch_sz *
        out_w * out_h;
    im_ptr +=
        (b * n_offset_grps + offset_grp) * c_per_offset_grp * height * width;
    offset_ptr += (b * n_offset_grps + offset_grp) * 2 * weight_h * weight_w *
        out_h * out_w;

705
706
707
708
709
    if (use_mask) {
      mask_ptr += (b * n_offset_grps + offset_grp) * weight_h * weight_w *
          out_h * out_w;
    }

710
    const int offset_c = c - offset_grp * 2 * weight_h * weight_w;
711
    const bool is_y_direction = offset_c % 2 == 0;
712
713
714
715
716
717
718
719
720
721

    const int c_bound = c_per_offset_grp * weight_h * weight_w;
    for (int col_c = (offset_c / 2); col_c < c_bound; col_c += col_step) {
      const int col_pos = (((col_c * batch_sz + b) * out_h) + h) * out_w + w;

      int out_x = col_pos % out_w;
      int out_y = (col_pos / out_w) % out_h;
      int j = (col_pos / (out_w * out_h * batch_sz)) % weight_w;
      int i = (col_pos / (out_w * out_h * batch_sz * weight_w)) % weight_h;

722
723
      const int mask_idx = i * weight_w + j;

724
      const int offset_h_ptr =
725
          (((2 * mask_idx) * out_h + out_y) * out_w + out_x);
726
      const int offset_w_ptr =
727
          (((2 * mask_idx + 1) * out_h + out_y) * out_w + out_x);
728
729
730
      const scalar_t offset_h = offset_ptr[offset_h_ptr];
      const scalar_t offset_w = offset_ptr[offset_w_ptr];

731
732
733
734
735
      scalar_t mask_value = 1;
      if (use_mask) {
        mask_value = mask_ptr[(mask_idx * out_h + out_y) * out_w + out_x];
      }

736
737
738
739
740
      scalar_t y = (out_y * stride_h - pad_h) + i * dilation_h + offset_h;
      scalar_t x = (out_x * stride_w - pad_w) + j * dilation_w + offset_w;

      const scalar_t weight =
          get_coordinate_weight(im_ptr, height, width, y, x, is_y_direction);
741
742
743
744
745
746
747
      grad_offset_val += mask_value * weight * col_ptr[col_pos];

      if (use_mask && is_y_direction) {
        grad_mask_val += col_ptr[col_pos] *
            bilinear_interpolate(im_ptr, height, width, y, x);
      }

748
749
750
      im_ptr += height * width;
    }

751
752
753
754
755
756
757
758
759
760
761
762
    grad_offset[index] = grad_offset_val;

    if (use_mask && is_y_direction) {
      const int idx =
          ((((b * n_offset_grps + offset_grp) * weight_h + w_h) * weight_w +
            w_w) *
               out_h +
           h) *
              out_w +
          w;
      grad_mask[idx] = grad_mask_val;
    }
763
764
765
  }
}

766
static void compute_grad_offset_and_mask(
767
768
769
    const at::Tensor& columns,
    const at::Tensor& input,
    const at::Tensor& offset,
770
    const at::Tensor& mask,
771
772
773
774
775
776
777
778
779
780
781
782
783
    int channels,
    int height,
    int width,
    int weight_h,
    int weight_w,
    int pad_h,
    int pad_w,
    int stride_h,
    int stride_w,
    int dilation_h,
    int dilation_w,
    int parallel_imgs,
    int n_offset_grps,
784
785
786
    bool use_mask,
    at::Tensor grad_offset,
    at::Tensor grad_mask) {
787
788
789
790
791
792
793
  int out_h =
      (height + 2 * pad_h - (dilation_h * (weight_h - 1) + 1)) / stride_h + 1;
  int out_w =
      (width + 2 * pad_w - (dilation_w * (weight_w - 1) + 1)) / stride_w + 1;
  int num_kernels =
      out_h * out_w * 2 * weight_h * weight_w * n_offset_grps * parallel_imgs;

794
795
796
  const unsigned int threads = GET_THREADS();
  const unsigned int blocks = GET_BLOCKS(threads, num_kernels);

797
798
799
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
      columns.scalar_type(), "deformable_col2im_coord_gpu", ([&] {
        deformable_col2im_coord_gpu_kernel<<<
800
801
            blocks,
            threads>>>(
802
803
804
805
            num_kernels,
            columns.data_ptr<scalar_t>(),
            input.data_ptr<scalar_t>(),
            offset.data_ptr<scalar_t>(),
806
            mask.data_ptr<scalar_t>(),
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
            channels,
            height,
            width,
            weight_h,
            weight_w,
            pad_h,
            pad_w,
            stride_h,
            stride_w,
            dilation_h,
            dilation_w,
            parallel_imgs,
            2 * weight_h * weight_w * n_offset_grps,
            n_offset_grps,
            out_h,
            out_w,
823
824
825
            use_mask,
            grad_offset.data_ptr<scalar_t>(),
            grad_mask.data_ptr<scalar_t>());
826
827
828
829
      }));

  cudaError_t err = cudaGetLastError();
  if (err != cudaSuccess) {
830
831
    printf(
        "error in compute_grad_offset_and_mask: %s\n", cudaGetErrorString(err));
832
833
834
  }
}

835
static std::tuple<at::Tensor, at::Tensor, at::Tensor> deform_conv2d_backward_input_cuda(
836
837
838
    at::Tensor input,
    at::Tensor weight,
    at::Tensor offset,
839
    at::Tensor mask,
840
    at::Tensor grad_out,
841
842
843
844
845
846
    int stride_h,
    int stride_w,
    int pad_h,
    int pad_w,
    int dil_h,
    int dil_w,
847
848
    int n_weight_grps,
    int n_offset_grps,
849
850
    int n_parallel_imgs,
    bool use_mask) {
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
  at::DeviceGuard guard(input.device());

  int batch_sz = input.size(0);
  long n_in_channels = input.size(1);
  long in_h = input.size(2);
  long in_w = input.size(3);

  n_parallel_imgs = std::min(batch_sz, n_parallel_imgs);

  long n_out_channels = weight.size(0);
  int weight_h = weight.size(2);
  int weight_w = weight.size(3);

  long out_w = (in_w + 2 * pad_w - (dil_w * (weight_w - 1) + 1)) / stride_w + 1;
  long out_h = (in_h + 2 * pad_h - (dil_h * (weight_h - 1) + 1)) / stride_h + 1;

  auto grad_input = at::zeros_like(input);
  auto grad_offset = at::zeros_like(offset);
869
870
  auto grad_mask = at::zeros_like(mask);

871
  if (batch_sz == 0) {
872
    return std::make_tuple(grad_input, grad_offset, grad_mask);
873
  }
874

875
  auto columns = at::empty(
876
877
878
879
      {n_in_channels * weight_w * weight_h, n_parallel_imgs * out_h * out_w},
      input.options());

  // Separate into blocks
880
  grad_input = grad_input.reshape(
881
      {batch_sz / n_parallel_imgs, n_parallel_imgs, n_in_channels, in_h, in_w});
882
  input = input.reshape(
883
      {batch_sz / n_parallel_imgs, n_parallel_imgs, n_in_channels, in_h, in_w});
884

885
886
887
888
889
890
891
892
893
894
895
  grad_offset = grad_offset.reshape({batch_sz / n_parallel_imgs,
                                     n_parallel_imgs,
                                     n_offset_grps * 2 * weight_h * weight_w,
                                     out_h,
                                     out_w});
  offset = offset.reshape({batch_sz / n_parallel_imgs,
                           n_parallel_imgs,
                           n_offset_grps * 2 * weight_h * weight_w,
                           out_h,
                           out_w});

896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
  if (use_mask) {
    grad_mask = grad_mask.reshape({batch_sz / n_parallel_imgs,
                                   n_parallel_imgs,
                                   n_offset_grps * weight_h * weight_w,
                                   out_h,
                                   out_w});
    mask = mask.reshape({batch_sz / n_parallel_imgs,
                         n_parallel_imgs,
                         n_offset_grps * weight_h * weight_w,
                         out_h,
                         out_w});
  }

  grad_out = grad_out
                 .reshape({batch_sz / n_parallel_imgs,
                           n_parallel_imgs,
                           n_weight_grps,
                           n_out_channels / n_weight_grps,
                           out_h,
                           out_w})
                 .permute({0, 2, 3, 1, 4, 5});
917
918
919
920
921
922

  weight = weight.reshape({n_weight_grps,
                           weight.size(0) / n_weight_grps,
                           weight.size(1),
                           weight.size(2),
                           weight.size(3)});
923

924
925
  columns = columns.view(
      {n_weight_grps, columns.size(0) / n_weight_grps, columns.size(1)});
926
  for (int elt = 0; elt < batch_sz / n_parallel_imgs; elt++) {
927
    columns.zero_();
928
929
930
931
932
933
    // Separate into weight groups
    for (int g = 0; g < n_weight_grps; g++) {
      columns[g] = columns[g].addmm_(
          weight[g].flatten(1).transpose(0, 1), grad_out[elt][g].flatten(1));
    }

934
    compute_grad_offset_and_mask(
935
936
937
        columns,
        input[elt],
        offset[elt],
938
        mask[elt],
939
940
941
942
943
944
945
946
947
948
949
950
951
        n_in_channels,
        in_h,
        in_w,
        weight_h,
        weight_w,
        pad_h,
        pad_w,
        stride_h,
        stride_w,
        dil_h,
        dil_w,
        n_parallel_imgs,
        n_offset_grps,
952
953
954
        use_mask,
        grad_offset[elt],
        grad_mask[elt]);
955
956
957
958

    compute_grad_input(
        columns,
        offset[elt],
959
        mask[elt],
960
961
962
963
964
965
966
967
968
969
970
971
972
        n_in_channels,
        in_h,
        in_w,
        weight_h,
        weight_w,
        pad_h,
        pad_w,
        stride_h,
        stride_w,
        dil_h,
        dil_w,
        n_parallel_imgs,
        n_offset_grps,
973
        use_mask,
974
975
976
977
978
979
980
        grad_input[elt]);
  }

  grad_input = grad_input.view({batch_sz, n_in_channels, in_h, in_w});
  grad_offset = grad_offset.view(
      {batch_sz, n_offset_grps * 2 * weight_h * weight_w, out_h, out_w});

981
982
983
984
985
986
  if (use_mask) {
    grad_mask = grad_mask.view(
        {batch_sz, n_offset_grps * weight_h * weight_w, out_h, out_w});
  }

  return std::make_tuple(grad_input, grad_offset, grad_mask);
987
988
}

989
static at::Tensor deform_conv2d_backward_parameters_cuda(
990
    at::Tensor input,
991
    const at::Tensor& weight,
992
    at::Tensor offset,
993
    at::Tensor mask,
994
    const at::Tensor& grad_out,
995
996
997
998
999
1000
    int stride_h,
    int stride_w,
    int pad_h,
    int pad_w,
    int dil_h,
    int dil_w,
1001
1002
    int n_weight_grps,
    int n_offset_grps,
1003
1004
    int n_parallel_imgs,
    bool use_mask) {
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
  at::DeviceGuard guard(input.device());

  int batch_sz = input.size(0);
  long n_in_channels = input.size(1);
  long in_h = input.size(2);
  long in_w = input.size(3);

  n_parallel_imgs = std::min(batch_sz, n_parallel_imgs);

  long n_out_channels = weight.size(0);
  int weight_h = weight.size(2);
  int weight_w = weight.size(3);

  long out_h = grad_out.size(2);
  long out_w = grad_out.size(3);

  auto grad_weight = at::zeros_like(weight);
1022
1023
1024
  if (batch_sz == 0) {
    return grad_weight;
  }
1025

1026
1027
1028
1029
1030
1031
1032
1033
1034
  at::Tensor grad_out_buf = grad_out
                                .reshape({batch_sz / n_parallel_imgs,
                                          n_parallel_imgs,
                                          n_weight_grps,
                                          n_out_channels / n_weight_grps,
                                          out_h,
                                          out_w})
                                .permute({0, 2, 3, 1, 4, 5})
                                .contiguous();
1035
1036

  input = input.reshape(
1037
      {batch_sz / n_parallel_imgs, n_parallel_imgs, n_in_channels, in_h, in_w});
1038

1039
1040
1041
1042
1043
1044
  offset = offset.reshape({batch_sz / n_parallel_imgs,
                           n_parallel_imgs,
                           n_offset_grps * 2 * weight_h * weight_w,
                           out_h,
                           out_w});

1045
1046
1047
1048
1049
1050
1051
1052
  if (use_mask) {
    mask = mask.reshape({batch_sz / n_parallel_imgs,
                         n_parallel_imgs,
                         n_offset_grps * weight_h * weight_w,
                         out_h,
                         out_w});
  }

1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
  grad_weight = grad_weight.reshape({n_weight_grps,
                                     grad_weight.size(0) / n_weight_grps,
                                     grad_weight.size(1),
                                     grad_weight.size(2),
                                     grad_weight.size(3)});

  auto columns = at::empty(
      {n_weight_grps,
       n_in_channels * weight_w * weight_h / n_weight_grps,
       n_parallel_imgs * out_h * out_w},
      input.options());
1064
1065
1066
1067
1068

  for (int elt = 0; elt < batch_sz / n_parallel_imgs; elt++) {
    deformable_im2col(
        input[elt],
        offset[elt],
1069
        mask[elt],
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
        n_in_channels,
        in_h,
        in_w,
        weight_h,
        weight_w,
        pad_h,
        pad_w,
        stride_h,
        stride_w,
        dil_h,
        dil_w,
        out_h,
        out_w,
        n_parallel_imgs,
        n_offset_grps,
1085
        use_mask,
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
        columns);

    for (int g = 0; g < n_weight_grps; g++) {
      grad_weight[g] =
          grad_weight[g]
              .flatten(1)
              .addmm_(
                  grad_out_buf[elt][g].flatten(1), columns[g].transpose(1, 0))
              .view_as(grad_weight[g]);
    }
  }

  grad_weight = grad_weight.view({grad_weight.size(0) * grad_weight.size(1),
                                  grad_weight.size(2),
                                  grad_weight.size(3),
                                  grad_weight.size(4)});
  return grad_weight;
}

1105
std::tuple<at::Tensor, at::Tensor, at::Tensor, at::Tensor, at::Tensor>
1106
DeformConv2d_backward_cuda(
1107
1108
1109
1110
    const at::Tensor& grad_out_param,
    const at::Tensor& input_param,
    const at::Tensor& weight_param,
    const at::Tensor& offset_param,
1111
    const at::Tensor& mask_param,
1112
1113
1114
1115
1116
1117
1118
1119
    const at::Tensor& bias_param,
    int64_t stride_h,
    int64_t stride_w,
    int64_t pad_h,
    int64_t pad_w,
    int64_t dil_h,
    int64_t dil_w,
    int64_t n_weight_grps,
1120
1121
    int64_t n_offset_grps,
    bool use_mask) {
1122
1123
1124
1125
  at::Tensor grad_out = grad_out_param.contiguous();
  at::Tensor input = input_param.contiguous();
  at::Tensor weight = weight_param.contiguous();
  at::Tensor offset = offset_param.contiguous();
1126
  at::Tensor mask = mask_param.contiguous();
1127
1128
  at::Tensor bias = bias_param.contiguous();

1129
1130
1131
1132
  const int batch_sz = input.size(0);
  const int n_parallel_imgs =
      get_greatest_divisor_below_bound(batch_sz, kMaxParallelImgs);

1133
  auto grad_input_and_offset_and_mask = deform_conv2d_backward_input_cuda(
1134
1135
1136
      input,
      weight,
      offset,
1137
      mask,
1138
      grad_out,
1139
1140
1141
1142
1143
1144
      stride_h,
      stride_w,
      pad_h,
      pad_w,
      dil_h,
      dil_w,
1145
1146
      n_weight_grps,
      n_offset_grps,
1147
1148
      n_parallel_imgs,
      use_mask);
1149

1150
1151
1152
  auto grad_input = std::get<0>(grad_input_and_offset_and_mask);
  auto grad_offset = std::get<1>(grad_input_and_offset_and_mask);
  auto grad_mask = std::get<2>(grad_input_and_offset_and_mask);
1153

1154
  auto grad_weight = deform_conv2d_backward_parameters_cuda(
1155
1156
1157
      input,
      weight,
      offset,
1158
      mask,
1159
      grad_out,
1160
1161
1162
1163
1164
1165
      stride_h,
      stride_w,
      pad_h,
      pad_w,
      dil_h,
      dil_w,
1166
1167
      n_weight_grps,
      n_offset_grps,
1168
1169
      n_parallel_imgs,
      use_mask);
1170
1171
1172
1173

  auto value = grad_out.sum({0, 2, 3});
  auto grad_bias = at::ones_like(bias) * value;

1174
1175
  return std::make_tuple(
      grad_input, grad_weight, grad_offset, grad_mask, grad_bias);
1176
}