feature_extraction.py 24.1 KB
Newer Older
1
2
import inspect
import math
3
import re
4
5
import warnings
from collections import OrderedDict
6
7
from copy import deepcopy
from itertools import chain
8
from typing import Dict, Callable, List, Union, Optional, Tuple, Any
9
10

import torch
11
import torchvision
12
from torch import fx
13
from torch import nn
14
15
16
from torch.fx.graph_module import _copy_attr


17
__all__ = ["create_feature_extractor", "get_graph_node_names"]
18
19
20
21
22
23
24
25


class LeafModuleAwareTracer(fx.Tracer):
    """
    An fx.Tracer that allows the user to specify a set of leaf modules, ie.
    modules that are not to be traced through. The resulting graph ends up
    having single nodes referencing calls to the leaf modules' forward methods.
    """
26

27
28
    def __init__(self, *args, **kwargs):
        self.leaf_modules = {}
29
30
        if "leaf_modules" in kwargs:
            leaf_modules = kwargs.pop("leaf_modules")
31
            self.leaf_modules = leaf_modules
32
        super().__init__(*args, **kwargs)
33
34
35
36
37
38
39
40
41
42
43

    def is_leaf_module(self, m: nn.Module, module_qualname: str) -> bool:
        if isinstance(m, tuple(self.leaf_modules)):
            return True
        return super().is_leaf_module(m, module_qualname)


class NodePathTracer(LeafModuleAwareTracer):
    """
    NodePathTracer is an FX tracer that, for each operation, also records the
    name of the Node from which the operation originated. A node name here is
44
    a `.` separated path walking the hierarchy from top level module down to
45
46
47
48
49
50
51
52
53
54
55
56
57
    leaf operation or leaf module. The name of the top level module is not
    included as part of the node name. For example, if we trace a module whose
    forward method applies a ReLU module, the name for that node will simply
    be 'relu'.

    Some notes on the specifics:
        - Nodes are recorded to `self.node_to_qualname` which is a dictionary
          mapping a given Node object to its node name.
        - Nodes are recorded in the order which they are executed during
          tracing.
        - When a duplicate node name is encountered, a suffix of the form
          _{int} is added. The counter starts from 1.
    """
58

59
    def __init__(self, *args, **kwargs):
60
        super().__init__(*args, **kwargs)
61
        # Track the qualified name of the Node being traced
62
        self.current_module_qualname = ""
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        # A map from FX Node to the qualified name\#
        # NOTE: This is loosely like the "qualified name" mentioned in the
        # torch.fx docs https://pytorch.org/docs/stable/fx.html but adapted
        # for the purposes of the torchvision feature extractor
        self.node_to_qualname = OrderedDict()

    def call_module(self, m: torch.nn.Module, forward: Callable, args, kwargs):
        """
        Override of `fx.Tracer.call_module`
        This override:
        1) Stores away the qualified name of the caller for restoration later
        2) Adds the qualified name of the caller to
           `current_module_qualname` for retrieval by `create_proxy`
        3) Once a leaf module is reached, calls `create_proxy`
        4) Restores the caller's qualified name into current_module_qualname
        """
        old_qualname = self.current_module_qualname
        try:
            module_qualname = self.path_of_module(m)
            self.current_module_qualname = module_qualname
            if not self.is_leaf_module(m, module_qualname):
                out = forward(*args, **kwargs)
                return out
86
            return self.create_proxy("call_module", module_qualname, args, kwargs)
87
88
89
        finally:
            self.current_module_qualname = old_qualname

90
91
92
    def create_proxy(
        self, kind: str, target: fx.node.Target, args, kwargs, name=None, type_expr=None, *_
    ) -> fx.proxy.Proxy:
93
94
95
96
97
98
        """
        Override of `Tracer.create_proxy`. This override intercepts the recording
        of every operation and stores away the current traced module's qualified
        name in `node_to_qualname`
        """
        proxy = super().create_proxy(kind, target, args, kwargs, name, type_expr)
99
        self.node_to_qualname[proxy.node] = self._get_node_qualname(self.current_module_qualname, proxy.node)
100
101
        return proxy

102
    def _get_node_qualname(self, module_qualname: str, node: fx.node.Node) -> str:
103
        node_qualname = module_qualname
104

105
        if node.op != "call_module":
106
107
            # In this case module_qualname from torch.fx doesn't go all the
            # way to the leaf function/op so we need to append it
108
109
            if len(node_qualname) > 0:
                # Only append '.' if we are deeper than the top level module
110
                node_qualname += "."
111
            node_qualname += str(node)
112
113
114
115
116
117

        # Now we need to add an _{index} postfix on any repeated node names
        # For modules we do this from scratch
        # But for anything else, torch.fx already has a globally scoped
        # _{index} postfix. But we want it locally (relative to direct parent)
        # scoped. So first we need to undo the torch.fx postfix
118
119
        if re.match(r".+_[0-9]+$", node_qualname) is not None:
            node_qualname = node_qualname.rsplit("_", 1)[0]
120
121
122
123
124

        # ... and now we add on our own postfix
        for existing_qualname in reversed(self.node_to_qualname.values()):
            # Check to see if existing_qualname is of the form
            # {node_qualname} or {node_qualname}_{int}
125
126
            if re.match(rf"{node_qualname}(_[0-9]+)?$", existing_qualname) is not None:
                postfix = existing_qualname.replace(node_qualname, "")
127
128
129
130
131
132
                if len(postfix):
                    # existing_qualname is of the form {node_qualname}_{int}
                    next_index = int(postfix[1:]) + 1
                else:
                    # existing_qualname is of the form {node_qualname}
                    next_index = 1
133
                node_qualname += f"_{next_index}"
134
135
                break

136
137
138
139
140
141
142
143
144
145
146
        return node_qualname


def _is_subseq(x, y):
    """Check if y is a subseqence of x
    https://stackoverflow.com/a/24017747/4391249
    """
    iter_x = iter(x)
    return all(any(x_item == y_item for x_item in iter_x) for y_item in y)


147
def _warn_graph_differences(train_tracer: NodePathTracer, eval_tracer: NodePathTracer):
148
149
150
151
152
153
154
    """
    Utility function for warning the user if there are differences between
    the train graph nodes and the eval graph nodes.
    """
    train_nodes = list(train_tracer.node_to_qualname.values())
    eval_nodes = list(eval_tracer.node_to_qualname.values())

155
    if len(train_nodes) == len(eval_nodes) and all(t == e for t, e in zip(train_nodes, eval_nodes)):
156
157
158
159
        return

    suggestion_msg = (
        "When choosing nodes for feature extraction, you may need to specify "
160
161
        "output nodes for train and eval mode separately."
    )
162
163

    if _is_subseq(train_nodes, eval_nodes):
164
165
166
167
        msg = (
            "NOTE: The nodes obtained by tracing the model in eval mode "
            "are a subsequence of those obtained in train mode. "
        )
168
    elif _is_subseq(eval_nodes, train_nodes):
169
170
171
172
        msg = (
            "NOTE: The nodes obtained by tracing the model in train mode "
            "are a subsequence of those obtained in eval mode. "
        )
173
    else:
174
        msg = "The nodes obtained by tracing the model in train mode are different to those obtained in eval mode. "
175
176
177
    warnings.warn(msg + suggestion_msg)


178
179
180
181
182
183
184
185
186
def _get_leaf_modules_for_ops() -> List[type]:
    members = inspect.getmembers(torchvision.ops)
    result = []
    for _, obj in members:
        if inspect.isclass(obj) and issubclass(obj, torch.nn.Module):
            result.append(obj)
    return result


187
def get_graph_node_names(
188
189
190
    model: nn.Module,
    tracer_kwargs: Optional[Dict[str, Any]] = None,
    suppress_diff_warning: bool = False,
191
) -> Tuple[List[str], List[str]]:
192
193
194
195
196
197
    """
    Dev utility to return node names in order of execution. See note on node
    names under :func:`create_feature_extractor`. Useful for seeing which node
    names are available for feature extraction. There are two reasons that
    node names can't easily be read directly from the code for a model:

198
        1. Not all submodules are traced through. Modules from ``torch.nn`` all
199
200
           fall within this category.
        2. Nodes representing the repeated application of the same operation
201
           or leaf module get a ``_{counter}`` postfix.
202
203

    The model is traced twice: once in train mode, and once in eval mode. Both
204
205
206
207
208
    sets of node names are returned.

    For more details on the node naming conventions used here, please see the
    :ref:`relevant subheading <about-node-names>` in the
    `documentation <https://pytorch.org/vision/stable/feature_extraction.html>`_.
209
210
211
212

    Args:
        model (nn.Module): model for which we'd like to print node names
        tracer_kwargs (dict, optional): a dictionary of keywork arguments for
213
214
            ``NodePathTracer`` (they are eventually passed onto
            `torch.fx.Tracer <https://pytorch.org/docs/stable/fx.html#torch.fx.Tracer>`_).
215
            By default it will be set to wrap and make leaf nodes all torchvision ops.
216
217
218
219
220
221
222
223
224
225
226
227
228
        suppress_diff_warning (bool, optional): whether to suppress a warning
            when there are discrepancies between the train and eval version of
            the graph. Defaults to False.

    Returns:
        tuple(list, list): a list of node names from tracing the model in
        train mode, and another from tracing the model in eval mode.

    Examples::

        >>> model = torchvision.models.resnet18()
        >>> train_nodes, eval_nodes = get_graph_node_names(model)
    """
229
230
231
232
233
234
235
236
    if tracer_kwargs is None:
        tracer_kwargs = {
            "autowrap_modules": (
                math,
                torchvision.ops,
            ),
            "leaf_modules": _get_leaf_modules_for_ops(),
        }
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    is_training = model.training
    train_tracer = NodePathTracer(**tracer_kwargs)
    train_tracer.trace(model.train())
    eval_tracer = NodePathTracer(**tracer_kwargs)
    eval_tracer.trace(model.eval())
    train_nodes = list(train_tracer.node_to_qualname.values())
    eval_nodes = list(eval_tracer.node_to_qualname.values())
    if not suppress_diff_warning:
        _warn_graph_differences(train_tracer, eval_tracer)
    # Restore training state
    model.train(is_training)
    return train_nodes, eval_nodes


class DualGraphModule(fx.GraphModule):
    """
    A derivative of `fx.GraphModule`. Differs in the following ways:
    - Requires a train and eval version of the underlying graph
    - Copies submodules according to the nodes of both train and eval graphs.
    - Calling train(mode) switches between train graph and eval graph.
    """
258
259
260
261

    def __init__(
        self, root: torch.nn.Module, train_graph: fx.Graph, eval_graph: fx.Graph, class_name: str = "GraphModule"
    ):
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
        """
        Args:
            root (nn.Module): module from which the copied module hierarchy is
                built
            train_graph (fx.Graph): the graph that should be used in train mode
            eval_graph (fx.Graph): the graph that should be used in eval mode
        """
        super(fx.GraphModule, self).__init__()

        self.__class__.__name__ = class_name

        self.train_graph = train_graph
        self.eval_graph = eval_graph

        # Copy all get_attr and call_module ops (indicated by BOTH train and
        # eval graphs)
        for node in chain(iter(train_graph.nodes), iter(eval_graph.nodes)):
279
            if node.op in ["get_attr", "call_module"]:
280
281
                if not isinstance(node.target, str):
                    raise TypeError(f"node.target should be of type str instead of {type(node.target)}")
282
283
284
285
286
287
288
289
290
291
292
293
                _copy_attr(root, self, node.target)

        # train mode by default
        self.train()
        self.graph = train_graph

        # (borrowed from fx.GraphModule):
        # Store the Tracer class responsible for creating a Graph separately as part of the
        # GraphModule state, except when the Tracer is defined in a local namespace.
        # Locally defined Tracers are not pickleable. This is needed because torch.package will
        # serialize a GraphModule without retaining the Graph, and needs to use the correct Tracer
        # to re-create the Graph during deserialization.
294
295
296
297
        if self.eval_graph._tracer_cls != self.train_graph._tracer_cls:
            raise TypeError(
                f"Train mode and eval mode should use the same tracer class. Instead got {self.eval_graph._tracer_cls} for eval vs {self.train_graph._tracer_cls} for train"
            )
298
        self._tracer_cls = None
299
        if self.graph._tracer_cls and "<locals>" not in self.graph._tracer_cls.__qualname__:
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
            self._tracer_cls = self.graph._tracer_cls

    def train(self, mode=True):
        """
        Swap out the graph depending on the selected training mode.
        NOTE this should be safe when calling model.eval() because that just
        calls this with mode == False.
        """
        # NOTE: Only set self.graph if the current graph is not the desired
        # one. This saves us from recompiling the graph where not necessary.
        if mode and not self.training:
            self.graph = self.train_graph
        elif not mode and self.training:
            self.graph = self.eval_graph
        return super().train(mode=mode)


def create_feature_extractor(
318
319
320
321
    model: nn.Module,
    return_nodes: Optional[Union[List[str], Dict[str, str]]] = None,
    train_return_nodes: Optional[Union[List[str], Dict[str, str]]] = None,
    eval_return_nodes: Optional[Union[List[str], Dict[str, str]]] = None,
322
    tracer_kwargs: Optional[Dict[str, Any]] = None,
323
324
    suppress_diff_warning: bool = False,
) -> fx.GraphModule:
325
326
327
328
329
330
331
    """
    Creates a new graph module that returns intermediate nodes from a given
    model as dictionary with user specified keys as strings, and the requested
    outputs as values. This is achieved by re-writing the computation graph of
    the model via FX to return the desired nodes as outputs. All unused nodes
    are removed, together with their corresponding parameters.

332
333
334
335
336
    Desired output nodes must be specified as a ``.`` separated
    path walking the module hierarchy from top level module down to leaf
    operation or leaf module. For more details on the node naming conventions
    used here, please see the :ref:`relevant subheading <about-node-names>`
    in the `documentation <https://pytorch.org/vision/stable/feature_extraction.html>`_.
337
338
339
340
341
342

    Not all models will be FX traceable, although with some massaging they can
    be made to cooperate. Here's a (not exhaustive) list of tips:

        - If you don't need to trace through a particular, problematic
          sub-module, turn it into a "leaf module" by passing a list of
343
344
          ``leaf_modules`` as one of the ``tracer_kwargs`` (see example below).
          It will not be traced through, but rather, the resulting graph will
345
346
          hold a reference to that module's forward method.
        - Likewise, you may turn functions into leaf functions by passing a
347
          list of ``autowrap_functions`` as one of the ``tracer_kwargs`` (see
348
349
          example below).
        - Some inbuilt Python functions can be problematic. For instance,
350
351
352
          ``int`` will raise an error during tracing. You may wrap them in your
          own function and then pass that in ``autowrap_functions`` as one of
          the ``tracer_kwargs``.
353
354
355
356
357
358

    For further information on FX see the
    `torch.fx documentation <https://pytorch.org/docs/stable/fx.html>`_.

    Args:
        model (nn.Module): model on which we will extract the features
359
        return_nodes (list or dict, optional): either a ``List`` or a ``Dict``
360
361
            containing the names (or partial names - see note above)
            of the nodes for which the activations will be returned. If it is
362
            a ``Dict``, the keys are the node names, and the values
363
            are the user-specified keys for the graph module's returned
364
            dictionary. If it is a ``List``, it is treated as a ``Dict`` mapping
365
            node specification strings directly to output names. In the case
366
            that ``train_return_nodes`` and ``eval_return_nodes`` are specified,
367
368
            this should not be specified.
        train_return_nodes (list or dict, optional): similar to
369
            ``return_nodes``. This can be used if the return nodes
370
            for train mode are different than those from eval mode.
371
372
            If this is specified, ``eval_return_nodes`` must also be specified,
            and ``return_nodes`` should not be specified.
373
        eval_return_nodes (list or dict, optional): similar to
374
            ``return_nodes``. This can be used if the return nodes
375
            for train mode are different than those from eval mode.
376
            If this is specified, ``train_return_nodes`` must also be specified,
377
378
            and `return_nodes` should not be specified.
        tracer_kwargs (dict, optional): a dictionary of keywork arguments for
379
380
            ``NodePathTracer`` (which passes them onto it's parent class
            `torch.fx.Tracer <https://pytorch.org/docs/stable/fx.html#torch.fx.Tracer>`_).
381
            By default it will be set to wrap and make leaf nodes all torchvision ops.
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
        suppress_diff_warning (bool, optional): whether to suppress a warning
            when there are discrepancies between the train and eval version of
            the graph. Defaults to False.

    Examples::

        >>> # Feature extraction with resnet
        >>> model = torchvision.models.resnet18()
        >>> # extract layer1 and layer3, giving as names `feat1` and feat2`
        >>> model = create_feature_extractor(
        >>>     model, {'layer1': 'feat1', 'layer3': 'feat2'})
        >>> out = model(torch.rand(1, 3, 224, 224))
        >>> print([(k, v.shape) for k, v in out.items()])
        >>>     [('feat1', torch.Size([1, 64, 56, 56])),
        >>>      ('feat2', torch.Size([1, 256, 14, 14]))]

        >>> # Specifying leaf modules and leaf functions
        >>> def leaf_function(x):
        >>>     # This would raise a TypeError if traced through
        >>>     return int(x)
        >>>
        >>> class LeafModule(torch.nn.Module):
        >>>     def forward(self, x):
        >>>         # This would raise a TypeError if traced through
        >>>         int(x.shape[0])
        >>>         return torch.nn.functional.relu(x + 4)
        >>>
        >>> class MyModule(torch.nn.Module):
        >>>     def __init__(self):
        >>>         super().__init__()
        >>>         self.conv = torch.nn.Conv2d(3, 1, 3)
        >>>         self.leaf_module = LeafModule()
        >>>
        >>>     def forward(self, x):
        >>>         leaf_function(x.shape[0])
        >>>         x = self.conv(x)
        >>>         return self.leaf_module(x)
        >>>
        >>> model = create_feature_extractor(
        >>>     MyModule(), return_nodes=['leaf_module'],
        >>>     tracer_kwargs={'leaf_modules': [LeafModule],
        >>>                    'autowrap_functions': [leaf_function]})

    """
426
427
428
429
430
431
432
433
    if tracer_kwargs is None:
        tracer_kwargs = {
            "autowrap_modules": (
                math,
                torchvision.ops,
            ),
            "leaf_modules": _get_leaf_modules_for_ops(),
        }
434
435
    is_training = model.training

436
    if all(arg is None for arg in [return_nodes, train_return_nodes, eval_return_nodes]):
437

438
439
440
441
442
443
444
445
        raise ValueError(
            "Either `return_nodes` or `train_return_nodes` and `eval_return_nodes` together, should be specified"
        )

    if (train_return_nodes is None) ^ (eval_return_nodes is None):
        raise ValueError(
            "If any of `train_return_nodes` and `eval_return_nodes` are specified, then both should be specified"
        )
446

447
448
    if not ((return_nodes is None) ^ (train_return_nodes is None)):
        raise ValueError("If `train_return_nodes` and `eval_return_nodes` are specified, then both should be specified")
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466

    # Put *_return_nodes into Dict[str, str] format
    def to_strdict(n) -> Dict[str, str]:
        if isinstance(n, list):
            return {str(i): str(i) for i in n}
        return {str(k): str(v) for k, v in n.items()}

    if train_return_nodes is None:
        return_nodes = to_strdict(return_nodes)
        train_return_nodes = deepcopy(return_nodes)
        eval_return_nodes = deepcopy(return_nodes)
    else:
        train_return_nodes = to_strdict(train_return_nodes)
        eval_return_nodes = to_strdict(eval_return_nodes)

    # Repeat the tracing and graph rewriting for train and eval mode
    tracers = {}
    graphs = {}
467
468
469
    mode_return_nodes: Dict[str, Dict[str, str]] = {"train": train_return_nodes, "eval": eval_return_nodes}
    for mode in ["train", "eval"]:
        if mode == "train":
470
            model.train()
471
        elif mode == "eval":
472
473
474
475
476
477
            model.eval()

        # Instantiate our NodePathTracer and use that to trace the model
        tracer = NodePathTracer(**tracer_kwargs)
        graph = tracer.trace(model)

478
        name = model.__class__.__name__ if isinstance(model, nn.Module) else model.__name__
479
480
481
482
        graph_module = fx.GraphModule(tracer.root, graph, name)

        available_nodes = list(tracer.node_to_qualname.values())
        # FIXME We don't know if we should expect this to happen
483
484
485
486
        if len(set(available_nodes)) != len(available_nodes):
            raise ValueError(
                "There are duplicate nodes! Please raise an issue https://github.com/pytorch/vision/issues"
            )
487
488
489
490
        # Check that all outputs in return_nodes are present in the model
        for query in mode_return_nodes[mode].keys():
            # To check if a query is available we need to check that at least
            # one of the available names starts with it up to a .
491
            if not any([re.match(rf"^{query}(\.|$)", n) is not None for n in available_nodes]):
492
493
494
495
496
                raise ValueError(
                    f"node: '{query}' is not present in model. Hint: use "
                    "`get_graph_node_names` to make sure the "
                    "`return_nodes` you specified are present. It may even "
                    "be that you need to specify `train_return_nodes` and "
497
498
                    "`eval_return_nodes` separately."
                )
499
500
501
502

        # Remove existing output nodes (train mode)
        orig_output_nodes = []
        for n in reversed(graph_module.graph.nodes):
503
            if n.op == "output":
504
                orig_output_nodes.append(n)
505
506
507
        if not orig_output_nodes:
            raise ValueError("No output nodes found in graph_module.graph.nodes")

508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
        for n in orig_output_nodes:
            graph_module.graph.erase_node(n)

        # Find nodes corresponding to return_nodes and make them into output_nodes
        nodes = [n for n in graph_module.graph.nodes]
        output_nodes = OrderedDict()
        for n in reversed(nodes):
            module_qualname = tracer.node_to_qualname.get(n)
            if module_qualname is None:
                # NOTE - Know cases where this happens:
                # - Node representing creation of a tensor constant - probably
                #   not interesting as a return node
                # - When packing outputs into a named tuple like in InceptionV3
                continue
            for query in mode_return_nodes[mode]:
523
524
                depth = query.count(".")
                if ".".join(module_qualname.split(".")[: depth + 1]) == query:
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
                    output_nodes[mode_return_nodes[mode][query]] = n
                    mode_return_nodes[mode].pop(query)
                    break
        output_nodes = OrderedDict(reversed(list(output_nodes.items())))

        # And add them in the end of the graph
        with graph_module.graph.inserting_after(nodes[-1]):
            graph_module.graph.output(output_nodes)

        # Remove unused modules / parameters
        graph_module.graph.eliminate_dead_code()
        graph_module.recompile()

        # Keep track of the tracer and graph so we can choose the main one
        tracers[mode] = tracer
        graphs[mode] = graph

    # Warn user if there are any discrepancies between the graphs of the
    # train and eval modes
    if not suppress_diff_warning:
545
        _warn_graph_differences(tracers["train"], tracers["eval"])
546
547

    # Build the final graph module
548
    graph_module = DualGraphModule(model, graphs["train"], graphs["eval"], class_name=name)
549
550
551
552
553
554

    # Restore original training mode
    model.train(is_training)
    graph_module.train(is_training)

    return graph_module