PSROIPool_cuda.cu 9.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#include <ATen/ATen.h>
#include <ATen/TensorUtils.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>

#include "cuda_helpers.h"

template <typename T>
__global__ void PSROIPoolForward(
    const int nthreads,
    const T* input,
    const T spatial_scale,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    const T* rois,
    const int channels_out,
    T* output,
    int* channel_mapping) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c_out, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c_out = (index / pooled_width / pooled_height) % channels_out;
    int n = index / pooled_width / pooled_height / channels_out;

    // (n, c_in, ph, pw) is the associated element in the input
    int c_in = (c_out * pooled_height + ph) * pooled_width + pw;

    // [start, end) interval for spatial sampling
    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];
    int roi_start_w = roundf(offset_rois[1] * spatial_scale);
    int roi_start_h = roundf(offset_rois[2] * spatial_scale);
    int roi_end_w = roundf(offset_rois[3] * spatial_scale);
    int roi_end_h = roundf(offset_rois[4] * spatial_scale);

    // Force too small ROIs to be 1x1
    int roi_width = max(roi_end_w - roi_start_w, 1);
    int roi_height = max(roi_end_h - roi_start_h, 1);
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    int hstart = static_cast<int>(floor(static_cast<T>(ph) * bin_size_h));
    int wstart = static_cast<int>(floor(static_cast<T>(pw) * bin_size_w));
    int hend = static_cast<int>(ceil(static_cast<T>(ph + 1) * bin_size_h));
    int wend = static_cast<int>(ceil(static_cast<T>(pw + 1) * bin_size_w));

    // Add roi offsets and clip to input boundaries
    hstart = min(max(hstart + roi_start_h, 0), height - 1);
    hend = min(max(hend + roi_start_h, 0), height - 1);
    wstart = min(max(wstart + roi_start_w, 0), width - 1);
    wend = min(max(wend + roi_start_w, 0), width - 1);
    bool is_empty = (hend <= hstart) || (wend <= wstart);

    const T* offset_input =
        input + (roi_batch_ind * channels + c_in) * height * width;
    T out_sum = 0;
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
        int input_index = h * width + w;
        out_sum += offset_input[input_index];
      }
    }

    T bin_area = (hend - hstart) * (wend - wstart);
    output[index] = is_empty ? static_cast<T>(0) : out_sum / bin_area;
    channel_mapping[index] = c_in;
  }
}

template <typename T>
__global__ void PSROIPoolBackward(
    const int nthreads,
    const T* grad_output,
    const int* channel_mapping,
    const int num_rois,
    const T spatial_scale,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    const int channels_out,
    T* grad_input,
    const T* rois) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, *, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int n = index / pooled_width / pooled_height / channels_out;

    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];
    int roi_start_w = roundf(offset_rois[1] * spatial_scale);
    int roi_start_h = roundf(offset_rois[2] * spatial_scale);
    int roi_end_w = roundf(offset_rois[3] * spatial_scale);
    int roi_end_h = roundf(offset_rois[4] * spatial_scale);

    // Force too small ROIs to be 1x1
    int roi_width = max(roi_end_w - roi_start_w, 1);
    int roi_height = max(roi_end_h - roi_start_h, 1);
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    int hstart = static_cast<int>(floor(static_cast<T>(ph) * bin_size_h));
    int wstart = static_cast<int>(floor(static_cast<T>(pw) * bin_size_w));
    int hend = static_cast<int>(ceil(static_cast<T>(ph + 1) * bin_size_h));
    int wend = static_cast<int>(ceil(static_cast<T>(pw + 1) * bin_size_w));

    // Add roi offsets and clip to input boundaries
    hstart = min(max(hstart + roi_start_h, 0), height);
    hend = min(max(hend + roi_start_h, 0), height);
    wstart = min(max(wstart + roi_start_w, 0), width);
    wend = min(max(wend + roi_start_w, 0), width);
    bool is_empty = (hend <= hstart) || (wend <= wstart);

    int c_in = channel_mapping[index];
    T* grad_input_offset =
        grad_input + (roi_batch_ind * channels + c_in) * height * width;
    T bin_area = (hend - hstart) * (wend - wstart);
    T diff_val = is_empty ? static_cast<T>(0) : grad_output[index] / bin_area;
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
        int grad_input_index = h * width + w;
        atomicAdd(grad_input_offset + grad_input_index, diff_val);
      }
    }
  }
}

std::tuple<at::Tensor, at::Tensor> PSROIPool_forward_cuda(
    const at::Tensor& input,
    const at::Tensor& rois,
    const float spatial_scale,
    const int pooled_height,
    const int pooled_width) {
  // Check if input tensors are CUDA tensors
  AT_ASSERTM(input.type().is_cuda(), "input must be a CUDA tensor");
  AT_ASSERTM(rois.type().is_cuda(), "rois must be a CUDA tensor");

  at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};

  at::CheckedFrom c = "PSROIPool_forward_cuda";
  at::checkAllSameGPU(c, {input_t, rois_t});
  at::checkAllSameType(c, {input_t, rois_t});

  at::cuda::CUDAGuard device_guard(input.device());

  auto num_rois = rois.size(0);
  auto channels = input.size(1);
  auto height = input.size(2);
  auto width = input.size(3);

  AT_ASSERTM(
      channels % (pooled_height * pooled_width) == 0,
      "input channels must be a multiple of pooling height * pooling width");
  int channels_out = channels / (pooled_height * pooled_width);

  auto output = at::zeros(
      {num_rois, channels_out, pooled_height, pooled_width}, input.options());
  auto channel_mapping =
      at::zeros(output.sizes(), input.options().dtype(at::kInt));

  auto output_size = output.numel();
  if (output_size == 0) {
    AT_CUDA_CHECK(cudaGetLastError());
    return std::make_tuple(output, channel_mapping);
  }

  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

176
177
178
179
  dim3 grid(std::min(
      at::cuda::ATenCeilDiv(
          static_cast<int64_t>(output_size), static_cast<int64_t>(512)),
      static_cast<int64_t>(4096)));
180
181
182
183
184
185
  dim3 block(512);

  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
      input.scalar_type(), "PSROIPool_forward", [&] {
        PSROIPoolForward<scalar_t><<<grid, block, 0, stream>>>(
            output_size,
186
            input.contiguous().data_ptr<scalar_t>(),
187
188
189
190
191
192
            spatial_scale,
            channels,
            height,
            width,
            pooled_height,
            pooled_width,
193
            rois.contiguous().data_ptr<scalar_t>(),
194
            channels_out,
195
196
            output.data_ptr<scalar_t>(),
            channel_mapping.data_ptr<int>());
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
      });
  AT_CUDA_CHECK(cudaGetLastError());
  return std::make_tuple(output, channel_mapping);
}

at::Tensor PSROIPool_backward_cuda(
    const at::Tensor& grad,
    const at::Tensor& rois,
    const at::Tensor& channel_mapping,
    const float spatial_scale,
    const int pooled_height,
    const int pooled_width,
    const int batch_size,
    const int channels,
    const int height,
    const int width) {
  // Check if input tensors are CUDA tensors
  AT_ASSERTM(grad.type().is_cuda(), "grad must be a CUDA tensor");
  AT_ASSERTM(rois.type().is_cuda(), "rois must be a CUDA tensor");
  AT_ASSERTM(
      channel_mapping.type().is_cuda(),
      "channel_mapping must be a CUDA tensor");

  at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2},
      channel_mapping_t{channel_mapping, "channel_mapping", 3};

  at::CheckedFrom c = "PSROIPool_backward_cuda";
  at::checkAllSameGPU(c, {grad_t, rois_t, channel_mapping_t});
  at::checkAllSameType(c, {grad_t, rois_t});

  at::cuda::CUDAGuard device_guard(grad.device());

  auto num_rois = rois.size(0);
  auto grad_input =
      at::zeros({batch_size, channels, height, width}, grad.options());

  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

235
236
237
238
  dim3 grid(std::min(
      at::cuda::ATenCeilDiv(
          static_cast<int64_t>(grad.numel()), static_cast<int64_t>(512)),
      static_cast<int64_t>(4096)));
239
240
241
242
243
244
245
246
247
248
249
250
251
252
  dim3 block(512);

  // handle possibly empty gradients
  if (grad.numel() == 0) {
    AT_CUDA_CHECK(cudaGetLastError());
    return grad_input;
  }

  int channels_out = channels / (pooled_height * pooled_width);

  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
      grad.scalar_type(), "PSROIPool_backward", [&] {
        PSROIPoolBackward<scalar_t><<<grid, block, 0, stream>>>(
            grad.numel(),
253
254
            grad.contiguous().data_ptr<scalar_t>(),
            channel_mapping.data_ptr<int>(),
255
256
257
258
259
260
261
262
            num_rois,
            spatial_scale,
            channels,
            height,
            width,
            pooled_height,
            pooled_width,
            channels_out,
263
264
            grad_input.data_ptr<scalar_t>(),
            rois.contiguous().data_ptr<scalar_t>());
265
266
267
268
      });
  AT_CUDA_CHECK(cudaGetLastError());
  return grad_input;
}