transforms_v2_dispatcher_infos.py 15.3 KB
Newer Older
1
import collections.abc
2
3

import pytest
4
import torchvision.transforms.v2.functional as F
5
from common_utils import InfoBase, TestMark
6
from torchvision import datapoints
7
from transforms_v2_kernel_infos import KERNEL_INFOS, pad_xfail_jit_fill_condition
8
9
10
11

__all__ = ["DispatcherInfo", "DISPATCHER_INFOS"]


12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
class PILKernelInfo(InfoBase):
    def __init__(
        self,
        kernel,
        *,
        # Defaults to `kernel.__name__`. Should be set if the function is exposed under a different name
        # TODO: This can probably be removed after roll-out since we shouldn't have any aliasing then
        kernel_name=None,
    ):
        super().__init__(id=kernel_name or kernel.__name__)
        self.kernel = kernel


class DispatcherInfo(InfoBase):
    _KERNEL_INFO_MAP = {info.kernel: info for info in KERNEL_INFOS}

    def __init__(
        self,
        dispatcher,
        *,
        # Dictionary of types that map to the kernel the dispatcher dispatches to.
        kernels,
        # If omitted, no PIL dispatch test will be performed.
        pil_kernel_info=None,
        # See InfoBase
        test_marks=None,
        # See InfoBase
        closeness_kwargs=None,
    ):
        super().__init__(id=dispatcher.__name__, test_marks=test_marks, closeness_kwargs=closeness_kwargs)
        self.dispatcher = dispatcher
        self.kernels = kernels
        self.pil_kernel_info = pil_kernel_info

        kernel_infos = {}
47
        for datapoint_type, kernel in self.kernels.items():
48
49
50
            kernel_info = self._KERNEL_INFO_MAP.get(kernel)
            if not kernel_info:
                raise pytest.UsageError(
51
                    f"Can't register {kernel.__name__} for type {datapoint_type} since there is no `KernelInfo` for it. "
52
                    f"Please add a `KernelInfo` for it in `transforms_v2_kernel_infos.py`."
53
                )
54
            kernel_infos[datapoint_type] = kernel_info
55
        self.kernel_infos = kernel_infos
56

57
58
59
    def sample_inputs(self, *datapoint_types, filter_metadata=True):
        for datapoint_type in datapoint_types or self.kernel_infos.keys():
            kernel_info = self.kernel_infos.get(datapoint_type)
60
61
62
63
            if not kernel_info:
                raise pytest.UsageError(f"There is no kernel registered for type {type.__name__}")

            sample_inputs = kernel_info.sample_inputs_fn()
64
65
66

            if not filter_metadata:
                yield from sample_inputs
67
                return
68

69
70
71
72
73
74
75
76
77
78
79
80
81
            import itertools

            for args_kwargs in sample_inputs:
                for name in itertools.chain(
                    datapoint_type.__annotations__.keys(),
                    # FIXME: this seems ok for conversion dispatchers, but we should probably handle this on a
                    #  per-dispatcher level. However, so far there is no option for that.
                    (f"old_{name}" for name in datapoint_type.__annotations__.keys()),
                ):
                    if name in args_kwargs.kwargs:
                        del args_kwargs.kwargs[name]

                yield args_kwargs
82

83

84
def xfail_jit(reason, *, condition=None):
85
86
87
    return TestMark(
        ("TestDispatchers", "test_scripted_smoke"),
        pytest.mark.xfail(reason=reason),
88
        condition=condition,
89
90
    )

91

92
93
94
95
96
def xfail_jit_python_scalar_arg(name, *, reason=None):
    return xfail_jit(
        reason or f"Python scalar int or float for `{name}` is not supported when scripting",
        condition=lambda args_kwargs: isinstance(args_kwargs.kwargs.get(name), (int, float)),
    )
97
98


99
100
101
skip_dispatch_datapoint = TestMark(
    ("TestDispatchers", "test_dispatch_datapoint"),
    pytest.mark.skip(reason="Dispatcher doesn't support arbitrary datapoint dispatch."),
102
103
)

104
105
106
107
108
109
110
111
112
multi_crop_skips = [
    TestMark(
        ("TestDispatchers", test_name),
        pytest.mark.skip(reason="Multi-crop dispatchers return a sequence of items rather than a single one."),
    )
    for test_name in ["test_simple_tensor_output_type", "test_pil_output_type", "test_datapoint_output_type"]
]
multi_crop_skips.append(skip_dispatch_datapoint)

113

114
115
116
117
118
119
120
def xfails_pil(reason, *, condition=None):
    return [
        TestMark(("TestDispatchers", test_name), pytest.mark.xfail(reason=reason), condition=condition)
        for test_name in ["test_dispatch_pil", "test_pil_output_type"]
    ]


121
def fill_sequence_needs_broadcast(args_kwargs):
122
123
124
125
126
127
128
129
130
131
132
133
    (image_loader, *_), kwargs = args_kwargs
    try:
        fill = kwargs["fill"]
    except KeyError:
        return False

    if not isinstance(fill, collections.abc.Sequence) or len(fill) > 1:
        return False

    return image_loader.num_channels > 1


134
135
xfails_pil_if_fill_sequence_needs_broadcast = xfails_pil(
    "PIL kernel doesn't support sequences of length 1 for `fill` if the number of color channels is larger.",
136
137
138
139
    condition=fill_sequence_needs_broadcast,
)


140
141
142
143
DISPATCHER_INFOS = [
    DispatcherInfo(
        F.horizontal_flip,
        kernels={
144
145
146
147
            datapoints.Image: F.horizontal_flip_image_tensor,
            datapoints.Video: F.horizontal_flip_video,
            datapoints.BoundingBox: F.horizontal_flip_bounding_box,
            datapoints.Mask: F.horizontal_flip_mask,
148
        },
149
        pil_kernel_info=PILKernelInfo(F.horizontal_flip_image_pil, kernel_name="horizontal_flip_image_pil"),
150
151
152
153
    ),
    DispatcherInfo(
        F.affine,
        kernels={
154
155
156
157
            datapoints.Image: F.affine_image_tensor,
            datapoints.Video: F.affine_video,
            datapoints.BoundingBox: F.affine_bounding_box,
            datapoints.Mask: F.affine_mask,
158
        },
159
        pil_kernel_info=PILKernelInfo(F.affine_image_pil),
160
        test_marks=[
161
            *xfails_pil_if_fill_sequence_needs_broadcast,
162
            xfail_jit_python_scalar_arg("shear"),
163
            xfail_jit_python_scalar_arg("fill"),
164
        ],
165
166
167
168
    ),
    DispatcherInfo(
        F.vertical_flip,
        kernels={
169
170
171
172
            datapoints.Image: F.vertical_flip_image_tensor,
            datapoints.Video: F.vertical_flip_video,
            datapoints.BoundingBox: F.vertical_flip_bounding_box,
            datapoints.Mask: F.vertical_flip_mask,
173
        },
174
        pil_kernel_info=PILKernelInfo(F.vertical_flip_image_pil, kernel_name="vertical_flip_image_pil"),
175
176
177
178
    ),
    DispatcherInfo(
        F.rotate,
        kernels={
179
180
181
182
            datapoints.Image: F.rotate_image_tensor,
            datapoints.Video: F.rotate_video,
            datapoints.BoundingBox: F.rotate_bounding_box,
            datapoints.Mask: F.rotate_mask,
183
        },
184
        pil_kernel_info=PILKernelInfo(F.rotate_image_pil),
185
        test_marks=[
186
187
            xfail_jit_python_scalar_arg("fill"),
            *xfails_pil_if_fill_sequence_needs_broadcast,
188
        ],
189
190
191
192
    ),
    DispatcherInfo(
        F.crop,
        kernels={
193
194
195
196
            datapoints.Image: F.crop_image_tensor,
            datapoints.Video: F.crop_video,
            datapoints.BoundingBox: F.crop_bounding_box,
            datapoints.Mask: F.crop_mask,
197
        },
198
        pil_kernel_info=PILKernelInfo(F.crop_image_pil, kernel_name="crop_image_pil"),
199
200
201
202
    ),
    DispatcherInfo(
        F.resized_crop,
        kernels={
203
204
205
206
            datapoints.Image: F.resized_crop_image_tensor,
            datapoints.Video: F.resized_crop_video,
            datapoints.BoundingBox: F.resized_crop_bounding_box,
            datapoints.Mask: F.resized_crop_mask,
207
        },
208
        pil_kernel_info=PILKernelInfo(F.resized_crop_image_pil),
209
210
211
212
    ),
    DispatcherInfo(
        F.pad,
        kernels={
213
214
215
216
            datapoints.Image: F.pad_image_tensor,
            datapoints.Video: F.pad_video,
            datapoints.BoundingBox: F.pad_bounding_box,
            datapoints.Mask: F.pad_mask,
217
        },
218
        pil_kernel_info=PILKernelInfo(F.pad_image_pil, kernel_name="pad_image_pil"),
219
        test_marks=[
220
221
222
223
            *xfails_pil(
                reason=(
                    "PIL kernel doesn't support sequences of length 1 for argument `fill` and "
                    "`padding_mode='constant'`, if the number of color channels is larger."
224
225
226
                ),
                condition=lambda args_kwargs: fill_sequence_needs_broadcast(args_kwargs)
                and args_kwargs.kwargs.get("padding_mode", "constant") == "constant",
227
            ),
228
229
            xfail_jit("F.pad only supports vector fills for list of floats", condition=pad_xfail_jit_fill_condition),
            xfail_jit_python_scalar_arg("padding"),
230
        ],
231
    ),
232
233
234
    DispatcherInfo(
        F.perspective,
        kernels={
235
236
237
238
            datapoints.Image: F.perspective_image_tensor,
            datapoints.Video: F.perspective_video,
            datapoints.BoundingBox: F.perspective_bounding_box,
            datapoints.Mask: F.perspective_mask,
239
        },
240
        pil_kernel_info=PILKernelInfo(F.perspective_image_pil),
241
        test_marks=[
242
243
            *xfails_pil_if_fill_sequence_needs_broadcast,
            xfail_jit_python_scalar_arg("fill"),
244
        ],
245
    ),
246
247
248
    DispatcherInfo(
        F.elastic,
        kernels={
249
250
251
252
            datapoints.Image: F.elastic_image_tensor,
            datapoints.Video: F.elastic_video,
            datapoints.BoundingBox: F.elastic_bounding_box,
            datapoints.Mask: F.elastic_mask,
253
        },
254
        pil_kernel_info=PILKernelInfo(F.elastic_image_pil),
255
        test_marks=[xfail_jit_python_scalar_arg("fill")],
256
    ),
257
258
259
    DispatcherInfo(
        F.center_crop,
        kernels={
260
261
262
263
            datapoints.Image: F.center_crop_image_tensor,
            datapoints.Video: F.center_crop_video,
            datapoints.BoundingBox: F.center_crop_bounding_box,
            datapoints.Mask: F.center_crop_mask,
264
        },
265
        pil_kernel_info=PILKernelInfo(F.center_crop_image_pil),
266
        test_marks=[
267
            xfail_jit_python_scalar_arg("output_size"),
268
        ],
269
270
271
272
    ),
    DispatcherInfo(
        F.gaussian_blur,
        kernels={
273
274
            datapoints.Image: F.gaussian_blur_image_tensor,
            datapoints.Video: F.gaussian_blur_video,
275
        },
276
        pil_kernel_info=PILKernelInfo(F.gaussian_blur_image_pil),
277
        test_marks=[
278
279
            xfail_jit_python_scalar_arg("kernel_size"),
            xfail_jit_python_scalar_arg("sigma"),
280
        ],
281
282
283
284
    ),
    DispatcherInfo(
        F.equalize,
        kernels={
285
286
            datapoints.Image: F.equalize_image_tensor,
            datapoints.Video: F.equalize_video,
287
        },
288
        pil_kernel_info=PILKernelInfo(F.equalize_image_pil, kernel_name="equalize_image_pil"),
289
290
291
292
    ),
    DispatcherInfo(
        F.invert,
        kernels={
293
294
            datapoints.Image: F.invert_image_tensor,
            datapoints.Video: F.invert_video,
295
        },
296
        pil_kernel_info=PILKernelInfo(F.invert_image_pil, kernel_name="invert_image_pil"),
297
298
299
300
    ),
    DispatcherInfo(
        F.posterize,
        kernels={
301
302
            datapoints.Image: F.posterize_image_tensor,
            datapoints.Video: F.posterize_video,
303
        },
304
        pil_kernel_info=PILKernelInfo(F.posterize_image_pil, kernel_name="posterize_image_pil"),
305
306
307
308
    ),
    DispatcherInfo(
        F.solarize,
        kernels={
309
310
            datapoints.Image: F.solarize_image_tensor,
            datapoints.Video: F.solarize_video,
311
        },
312
        pil_kernel_info=PILKernelInfo(F.solarize_image_pil, kernel_name="solarize_image_pil"),
313
314
315
316
    ),
    DispatcherInfo(
        F.autocontrast,
        kernels={
317
318
            datapoints.Image: F.autocontrast_image_tensor,
            datapoints.Video: F.autocontrast_video,
319
        },
320
        pil_kernel_info=PILKernelInfo(F.autocontrast_image_pil, kernel_name="autocontrast_image_pil"),
321
322
323
324
    ),
    DispatcherInfo(
        F.adjust_sharpness,
        kernels={
325
326
            datapoints.Image: F.adjust_sharpness_image_tensor,
            datapoints.Video: F.adjust_sharpness_video,
327
        },
328
        pil_kernel_info=PILKernelInfo(F.adjust_sharpness_image_pil, kernel_name="adjust_sharpness_image_pil"),
329
330
331
332
    ),
    DispatcherInfo(
        F.erase,
        kernels={
333
334
            datapoints.Image: F.erase_image_tensor,
            datapoints.Video: F.erase_video,
335
        },
336
        pil_kernel_info=PILKernelInfo(F.erase_image_pil),
337
        test_marks=[
338
            skip_dispatch_datapoint,
339
        ],
340
    ),
341
342
343
    DispatcherInfo(
        F.adjust_brightness,
        kernels={
344
345
            datapoints.Image: F.adjust_brightness_image_tensor,
            datapoints.Video: F.adjust_brightness_video,
346
        },
347
        pil_kernel_info=PILKernelInfo(F.adjust_brightness_image_pil, kernel_name="adjust_brightness_image_pil"),
348
349
350
351
    ),
    DispatcherInfo(
        F.adjust_contrast,
        kernels={
352
353
            datapoints.Image: F.adjust_contrast_image_tensor,
            datapoints.Video: F.adjust_contrast_video,
354
        },
355
        pil_kernel_info=PILKernelInfo(F.adjust_contrast_image_pil, kernel_name="adjust_contrast_image_pil"),
356
357
358
359
    ),
    DispatcherInfo(
        F.adjust_gamma,
        kernels={
360
361
            datapoints.Image: F.adjust_gamma_image_tensor,
            datapoints.Video: F.adjust_gamma_video,
362
        },
363
        pil_kernel_info=PILKernelInfo(F.adjust_gamma_image_pil, kernel_name="adjust_gamma_image_pil"),
364
365
366
367
    ),
    DispatcherInfo(
        F.adjust_hue,
        kernels={
368
369
            datapoints.Image: F.adjust_hue_image_tensor,
            datapoints.Video: F.adjust_hue_video,
370
        },
371
        pil_kernel_info=PILKernelInfo(F.adjust_hue_image_pil, kernel_name="adjust_hue_image_pil"),
372
373
374
375
    ),
    DispatcherInfo(
        F.adjust_saturation,
        kernels={
376
377
            datapoints.Image: F.adjust_saturation_image_tensor,
            datapoints.Video: F.adjust_saturation_video,
378
        },
379
        pil_kernel_info=PILKernelInfo(F.adjust_saturation_image_pil, kernel_name="adjust_saturation_image_pil"),
380
381
382
383
    ),
    DispatcherInfo(
        F.five_crop,
        kernels={
384
385
            datapoints.Image: F.five_crop_image_tensor,
            datapoints.Video: F.five_crop_video,
386
        },
387
        pil_kernel_info=PILKernelInfo(F.five_crop_image_pil),
388
        test_marks=[
389
            xfail_jit_python_scalar_arg("size"),
390
            *multi_crop_skips,
391
392
393
394
395
        ],
    ),
    DispatcherInfo(
        F.ten_crop,
        kernels={
396
397
            datapoints.Image: F.ten_crop_image_tensor,
            datapoints.Video: F.ten_crop_video,
398
        },
399
        test_marks=[
400
            xfail_jit_python_scalar_arg("size"),
401
            *multi_crop_skips,
402
        ],
403
        pil_kernel_info=PILKernelInfo(F.ten_crop_image_pil),
404
405
406
407
    ),
    DispatcherInfo(
        F.normalize,
        kernels={
408
409
            datapoints.Image: F.normalize_image_tensor,
            datapoints.Video: F.normalize_video,
410
        },
411
        test_marks=[
412
413
            xfail_jit_python_scalar_arg("mean"),
            xfail_jit_python_scalar_arg("std"),
414
        ],
415
    ),
416
417
418
    DispatcherInfo(
        F.convert_dtype,
        kernels={
419
420
            datapoints.Image: F.convert_dtype_image_tensor,
            datapoints.Video: F.convert_dtype_video,
421
422
        },
        test_marks=[
423
            skip_dispatch_datapoint,
424
425
        ],
    ),
426
427
428
    DispatcherInfo(
        F.uniform_temporal_subsample,
        kernels={
429
            datapoints.Video: F.uniform_temporal_subsample_video,
430
431
        },
        test_marks=[
432
            skip_dispatch_datapoint,
433
434
        ],
    ),
435
436
437
438
439
440
441
442
443
444
445
446
447
448
    DispatcherInfo(
        F.clamp_bounding_box,
        kernels={datapoints.BoundingBox: F.clamp_bounding_box},
        test_marks=[
            skip_dispatch_datapoint,
        ],
    ),
    DispatcherInfo(
        F.convert_format_bounding_box,
        kernels={datapoints.BoundingBox: F.convert_format_bounding_box},
        test_marks=[
            skip_dispatch_datapoint,
        ],
    ),
449
]