test_image.py 16.6 KB
Newer Older
1
import glob
2
3
import io
import os
4
5
import sys
from pathlib import Path
6

7
import pytest
8
import numpy as np
9
10
import torch
from PIL import Image
11
import torchvision.transforms.functional as F
12
from common_utils import get_tmp_dir, needs_cuda
13
from _assert_utils import assert_equal
14

15
from torchvision.io.image import (
16
    decode_png, decode_jpeg, encode_jpeg, write_jpeg, decode_image, read_file,
17
    encode_png, write_png, write_file, ImageReadMode, read_image)
Francisco Massa's avatar
Francisco Massa committed
18

19
IMAGE_ROOT = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets")
20
21
FAKEDATA_DIR = os.path.join(IMAGE_ROOT, "fakedata")
IMAGE_DIR = os.path.join(FAKEDATA_DIR, "imagefolder")
22
DAMAGED_JPEG = os.path.join(IMAGE_ROOT, 'damaged_jpeg')
23
ENCODE_JPEG = os.path.join(IMAGE_ROOT, "encode_jpeg")
24
25
26
27
28
29
30
31
32
IS_WINDOWS = sys.platform in ('win32', 'cygwin')


def _get_safe_image_name(name):
    # Used when we need to change the pytest "id" for an "image path" parameter.
    # If we don't, the test id (i.e. its name) will contain the whole path to the image, which is machine-specific,
    # and this creates issues when the test is running in a different machine than where it was collected
    # (typically, in fb internal infra)
    return name.split(os.path.sep)[-1]
33
34
35
36


def get_images(directory, img_ext):
    assert os.path.isdir(directory)
37
38
39
40
    image_paths = glob.glob(directory + f'/**/*{img_ext}', recursive=True)
    for path in image_paths:
        if path.split(os.sep)[-2] not in ['damaged_jpeg', 'jpeg_write']:
            yield path
41
42


43
44
45
46
47
48
49
50
51
52
53
54
55
def pil_read_image(img_path):
    with Image.open(img_path) as img:
        return torch.from_numpy(np.array(img))


def normalize_dimensions(img_pil):
    if len(img_pil.shape) == 3:
        img_pil = img_pil.permute(2, 0, 1)
    else:
        img_pil = img_pil.unsqueeze(0)
    return img_pil


56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
@pytest.mark.parametrize('img_path', [
    pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path))
    for jpeg_path in get_images(IMAGE_ROOT, ".jpg")
])
@pytest.mark.parametrize('pil_mode, mode', [
    (None, ImageReadMode.UNCHANGED),
    ("L", ImageReadMode.GRAY),
    ("RGB", ImageReadMode.RGB),
])
def test_decode_jpeg(img_path, pil_mode, mode):

    with Image.open(img_path) as img:
        is_cmyk = img.mode == "CMYK"
        if pil_mode is not None:
            if is_cmyk:
                # libjpeg does not support the conversion
                pytest.xfail("Decoding a CMYK jpeg isn't supported")
            img = img.convert(pil_mode)
        img_pil = torch.from_numpy(np.array(img))
        if is_cmyk:
            # flip the colors to match libjpeg
            img_pil = 255 - img_pil

    img_pil = normalize_dimensions(img_pil)
    data = read_file(img_path)
    img_ljpeg = decode_image(data, mode=mode)

    # Permit a small variation on pixel values to account for implementation
    # differences between Pillow and LibJPEG.
    abs_mean_diff = (img_ljpeg.type(torch.float32) - img_pil).abs().mean().item()
    assert abs_mean_diff < 2


def test_decode_jpeg_errors():
    with pytest.raises(RuntimeError, match="Expected a non empty 1-dimensional tensor"):
        decode_jpeg(torch.empty((100, 1), dtype=torch.uint8))

    with pytest.raises(RuntimeError, match="Expected a torch.uint8 tensor"):
        decode_jpeg(torch.empty((100,), dtype=torch.float16))

    with pytest.raises(RuntimeError, match="Not a JPEG file"):
        decode_jpeg(torch.empty((100), dtype=torch.uint8))


def test_decode_bad_huffman_images():
    # sanity check: make sure we can decode the bad Huffman encoding
    bad_huff = read_file(os.path.join(DAMAGED_JPEG, 'bad_huffman.jpg'))
    decode_jpeg(bad_huff)


@pytest.mark.parametrize('img_path', [
    pytest.param(truncated_image, id=_get_safe_image_name(truncated_image))
    for truncated_image in glob.glob(os.path.join(DAMAGED_JPEG, 'corrupt*.jpg'))
])
def test_damaged_corrupt_images(img_path):
    # Truncated images should raise an exception
    data = read_file(img_path)
    if 'corrupt34' in img_path:
        match_message = "Image is incomplete or truncated"
    else:
        match_message = "Unsupported marker type"
    with pytest.raises(RuntimeError, match=match_message):
        decode_jpeg(data)


@pytest.mark.parametrize('img_path', [
    pytest.param(png_path, id=_get_safe_image_name(png_path))
    for png_path in get_images(FAKEDATA_DIR, ".png")
])
@pytest.mark.parametrize('pil_mode, mode', [
    (None, ImageReadMode.UNCHANGED),
    ("L", ImageReadMode.GRAY),
    ("LA", ImageReadMode.GRAY_ALPHA),
    ("RGB", ImageReadMode.RGB),
    ("RGBA", ImageReadMode.RGB_ALPHA),
])
def test_decode_png(img_path, pil_mode, mode):

    with Image.open(img_path) as img:
        if pil_mode is not None:
            img = img.convert(pil_mode)
        img_pil = torch.from_numpy(np.array(img))

    img_pil = normalize_dimensions(img_pil)
    data = read_file(img_path)
    img_lpng = decode_image(data, mode=mode)

    tol = 0 if pil_mode is None else 1
    assert img_lpng.allclose(img_pil, atol=tol)


def test_decode_png_errors():
    with pytest.raises(RuntimeError, match="Expected a non empty 1-dimensional tensor"):
        decode_png(torch.empty((), dtype=torch.uint8))
    with pytest.raises(RuntimeError, match="Content is not png"):
        decode_png(torch.randint(3, 5, (300,), dtype=torch.uint8))


@pytest.mark.parametrize('img_path', [
    pytest.param(png_path, id=_get_safe_image_name(png_path))
    for png_path in get_images(IMAGE_DIR, ".png")
])
def test_encode_png(img_path):
    pil_image = Image.open(img_path)
    img_pil = torch.from_numpy(np.array(pil_image))
    img_pil = img_pil.permute(2, 0, 1)
    png_buf = encode_png(img_pil, compression_level=6)

    rec_img = Image.open(io.BytesIO(bytes(png_buf.tolist())))
    rec_img = torch.from_numpy(np.array(rec_img))
    rec_img = rec_img.permute(2, 0, 1)

    assert_equal(img_pil, rec_img)


def test_encode_png_errors():
    with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"):
        encode_png(torch.empty((3, 100, 100), dtype=torch.float32))

    with pytest.raises(RuntimeError, match="Compression level should be between 0 and 9"):
        encode_png(torch.empty((3, 100, 100), dtype=torch.uint8),
                   compression_level=-1)

    with pytest.raises(RuntimeError, match="Compression level should be between 0 and 9"):
        encode_png(torch.empty((3, 100, 100), dtype=torch.uint8),
                   compression_level=10)

    with pytest.raises(RuntimeError, match="The number of channels should be 1 or 3, got: 5"):
        encode_png(torch.empty((5, 100, 100), dtype=torch.uint8))


@pytest.mark.parametrize('img_path', [
    pytest.param(png_path, id=_get_safe_image_name(png_path))
    for png_path in get_images(IMAGE_DIR, ".png")
])
def test_write_png(img_path):
    with get_tmp_dir() as d:
        pil_image = Image.open(img_path)
        img_pil = torch.from_numpy(np.array(pil_image))
        img_pil = img_pil.permute(2, 0, 1)

        filename, _ = os.path.splitext(os.path.basename(img_path))
        torch_png = os.path.join(d, '{0}_torch.png'.format(filename))
        write_png(img_pil, torch_png, compression_level=6)
        saved_image = torch.from_numpy(np.array(Image.open(torch_png)))
        saved_image = saved_image.permute(2, 0, 1)

        assert_equal(img_pil, saved_image)


def test_read_file():
    with get_tmp_dir() as d:
        fname, content = 'test1.bin', b'TorchVision\211\n'
        fpath = os.path.join(d, fname)
        with open(fpath, 'wb') as f:
            f.write(content)

        data = read_file(fpath)
        expected = torch.tensor(list(content), dtype=torch.uint8)
        os.unlink(fpath)
        assert_equal(data, expected)

    with pytest.raises(RuntimeError, match="No such file or directory: 'tst'"):
        read_file('tst')


def test_read_file_non_ascii():
    with get_tmp_dir() as d:
        fname, content = '日本語(Japanese).bin', b'TorchVision\211\n'
        fpath = os.path.join(d, fname)
        with open(fpath, 'wb') as f:
            f.write(content)

        data = read_file(fpath)
        expected = torch.tensor(list(content), dtype=torch.uint8)
        os.unlink(fpath)
        assert_equal(data, expected)


def test_write_file():
    with get_tmp_dir() as d:
        fname, content = 'test1.bin', b'TorchVision\211\n'
        fpath = os.path.join(d, fname)
        content_tensor = torch.tensor(list(content), dtype=torch.uint8)
        write_file(fpath, content_tensor)

        with open(fpath, 'rb') as f:
            saved_content = f.read()
        os.unlink(fpath)
        assert content == saved_content


def test_write_file_non_ascii():
    with get_tmp_dir() as d:
        fname, content = '日本語(Japanese).bin', b'TorchVision\211\n'
        fpath = os.path.join(d, fname)
        content_tensor = torch.tensor(list(content), dtype=torch.uint8)
        write_file(fpath, content_tensor)

        with open(fpath, 'rb') as f:
            saved_content = f.read()
        os.unlink(fpath)
        assert content == saved_content
259

260

Prabhat Roy's avatar
Prabhat Roy committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
@pytest.mark.parametrize('shape', [
    (27, 27),
    (60, 60),
    (105, 105),
])
def test_read_1_bit_png(shape):
    with get_tmp_dir() as root:
        image_path = os.path.join(root, f'test_{shape}.png')
        pixels = np.random.rand(*shape) > 0.5
        img = Image.fromarray(pixels)
        img.save(image_path)
        img1 = read_image(image_path)
        img2 = normalize_dimensions(torch.as_tensor(pixels * 255, dtype=torch.uint8))
        assert_equal(img1, img2, check_stride=False)


@pytest.mark.parametrize('shape', [
    (27, 27),
    (60, 60),
    (105, 105),
])
@pytest.mark.parametrize('mode', [
    ImageReadMode.UNCHANGED,
    ImageReadMode.GRAY,
])
def test_read_1_bit_png_consistency(shape, mode):
    with get_tmp_dir() as root:
        image_path = os.path.join(root, f'test_{shape}.png')
        pixels = np.random.rand(*shape) > 0.5
        img = Image.fromarray(pixels)
        img.save(image_path)
        img1 = read_image(image_path, mode)
        img2 = read_image(image_path, mode)
        assert_equal(img1, img2)


297
@needs_cuda
298
@pytest.mark.parametrize('img_path', [
299
    pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path))
300
301
    for jpeg_path in get_images(IMAGE_ROOT, ".jpg")
])
302
303
304
305
306
@pytest.mark.parametrize('mode', [ImageReadMode.UNCHANGED, ImageReadMode.GRAY, ImageReadMode.RGB])
@pytest.mark.parametrize('scripted', (False, True))
def test_decode_jpeg_cuda(mode, img_path, scripted):
    if 'cmyk' in img_path:
        pytest.xfail("Decoding a CMYK jpeg isn't supported")
307

308
309
310
311
312
313
    data = read_file(img_path)
    img = decode_image(data, mode=mode)
    f = torch.jit.script(decode_jpeg) if scripted else decode_jpeg
    img_nvjpeg = f(data, mode=mode, device='cuda')

    # Some difference expected between jpeg implementations
314
    assert (img.float() - img_nvjpeg.cpu().float()).abs().mean() < 2
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337


@needs_cuda
@pytest.mark.parametrize('cuda_device', ('cuda', 'cuda:0', torch.device('cuda')))
def test_decode_jpeg_cuda_device_param(cuda_device):
    """Make sure we can pass a string or a torch.device as device param"""
    data = read_file(next(get_images(IMAGE_ROOT, ".jpg")))
    decode_jpeg(data, device=cuda_device)


@needs_cuda
def test_decode_jpeg_cuda_errors():
    data = read_file(next(get_images(IMAGE_ROOT, ".jpg")))
    with pytest.raises(RuntimeError, match="Expected a non empty 1-dimensional tensor"):
        decode_jpeg(data.reshape(-1, 1), device='cuda')
    with pytest.raises(RuntimeError, match="input tensor must be on CPU"):
        decode_jpeg(data.to('cuda'), device='cuda')
    with pytest.raises(RuntimeError, match="Expected a torch.uint8 tensor"):
        decode_jpeg(data.to(torch.float), device='cuda')
    with pytest.raises(RuntimeError, match="Expected a cuda device"):
        torch.ops.image.decode_jpeg_cuda(data, ImageReadMode.UNCHANGED.value, 'cpu')


338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
def test_encode_jpeg_errors():

    with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"):
        encode_jpeg(torch.empty((3, 100, 100), dtype=torch.float32))

    with pytest.raises(ValueError, match="Image quality should be a positive number "
                                         "between 1 and 100"):
        encode_jpeg(torch.empty((3, 100, 100), dtype=torch.uint8), quality=-1)

    with pytest.raises(ValueError, match="Image quality should be a positive number "
                                         "between 1 and 100"):
        encode_jpeg(torch.empty((3, 100, 100), dtype=torch.uint8), quality=101)

    with pytest.raises(RuntimeError, match="The number of channels should be 1 or 3, got: 5"):
        encode_jpeg(torch.empty((5, 100, 100), dtype=torch.uint8))

    with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
        encode_jpeg(torch.empty((1, 3, 100, 100), dtype=torch.uint8))

    with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
        encode_jpeg(torch.empty((100, 100), dtype=torch.uint8))


361
362
363
364
@pytest.mark.parametrize('img_path', [
    pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path))
    for jpeg_path in get_images(ENCODE_JPEG, ".jpg")
])
365
def test_encode_jpeg_reference(img_path):
366
    # This test is *wrong*.
367
    # It compares a torchvision-encoded jpeg with a PIL-encoded jpeg (the reference), but it
368
369
370
371
372
373
374
375
    # starts encoding the torchvision version from an image that comes from
    # decode_jpeg, which can yield different results from pil.decode (see
    # test_decode... which uses a high tolerance).
    # Instead, we should start encoding from the exact same decoded image, for a
    # valid comparison. This is done in test_encode_jpeg, but unfortunately
    # these more correct tests fail on windows (probably because of a difference
    # in libjpeg) between torchvision and PIL.
    # FIXME: make the correct tests pass on windows and remove this.
376
377
378
379
380
381
382
383
384
385
386
387
388
389
    dirname = os.path.dirname(img_path)
    filename, _ = os.path.splitext(os.path.basename(img_path))
    write_folder = os.path.join(dirname, 'jpeg_write')
    expected_file = os.path.join(
        write_folder, '{0}_pil.jpg'.format(filename))
    img = decode_jpeg(read_file(img_path))

    with open(expected_file, 'rb') as f:
        pil_bytes = f.read()
        pil_bytes = torch.as_tensor(list(pil_bytes), dtype=torch.uint8)
    for src_img in [img, img.contiguous()]:
        # PIL sets jpeg quality to 75 by default
        jpeg_bytes = encode_jpeg(src_img, quality=75)
        assert_equal(jpeg_bytes, pil_bytes)
390
391


392
393
394
395
@pytest.mark.parametrize('img_path', [
    pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path))
    for jpeg_path in get_images(ENCODE_JPEG, ".jpg")
])
396
397
def test_write_jpeg_reference(img_path):
    # FIXME: Remove this eventually, see test_encode_jpeg_reference
398
    with get_tmp_dir() as d:
399
400
        data = read_file(img_path)
        img = decode_jpeg(data)
401

402
403
404
405
406
407
        basedir = os.path.dirname(img_path)
        filename, _ = os.path.splitext(os.path.basename(img_path))
        torch_jpeg = os.path.join(
            d, '{0}_torch.jpg'.format(filename))
        pil_jpeg = os.path.join(
            basedir, 'jpeg_write', '{0}_pil.jpg'.format(filename))
408

409
        write_jpeg(img, torch_jpeg, quality=75)
410

411
412
        with open(torch_jpeg, 'rb') as f:
            torch_bytes = f.read()
413

414
415
        with open(pil_jpeg, 'rb') as f:
            pil_bytes = f.read()
416

417
        assert_equal(torch_bytes, pil_bytes)
418
419


420
421
422
@pytest.mark.skipif(IS_WINDOWS, reason=(
    'this test fails on windows because PIL uses libjpeg-turbo on windows'
))
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
@pytest.mark.parametrize('img_path', [
    pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path))
    for jpeg_path in get_images(ENCODE_JPEG, ".jpg")
])
def test_encode_jpeg(img_path):
    img = read_image(img_path)

    pil_img = F.to_pil_image(img)
    buf = io.BytesIO()
    pil_img.save(buf, format='JPEG', quality=75)

    # pytorch can't read from raw bytes so we go through numpy
    pil_bytes = np.frombuffer(buf.getvalue(), dtype=np.uint8)
    encoded_jpeg_pil = torch.as_tensor(pil_bytes)

    for src_img in [img, img.contiguous()]:
        encoded_jpeg_torch = encode_jpeg(src_img, quality=75)
        assert_equal(encoded_jpeg_torch, encoded_jpeg_pil)


443
444
445
@pytest.mark.skipif(IS_WINDOWS, reason=(
    'this test fails on windows because PIL uses libjpeg-turbo on windows'
))
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
@pytest.mark.parametrize('img_path', [
    pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path))
    for jpeg_path in get_images(ENCODE_JPEG, ".jpg")
])
def test_write_jpeg(img_path):
    with get_tmp_dir() as d:
        d = Path(d)
        img = read_image(img_path)
        pil_img = F.to_pil_image(img)

        torch_jpeg = str(d / 'torch.jpg')
        pil_jpeg = str(d / 'pil.jpg')

        write_jpeg(img, torch_jpeg, quality=75)
        pil_img.save(pil_jpeg, quality=75)

        with open(torch_jpeg, 'rb') as f:
            torch_bytes = f.read()

        with open(pil_jpeg, 'rb') as f:
            pil_bytes = f.read()

        assert_equal(torch_bytes, pil_bytes)


471
472
if __name__ == "__main__":
    pytest.main([__file__])