ps_roi_pool.py 2.57 KB
Newer Older
1
2
3
4
5
import torch
from torch import nn, Tensor

from torch.nn.modules.utils import _pair

6
from torchvision.extension import _assert_has_ops
7
from ._utils import convert_boxes_to_roi_format, check_roi_boxes_shape
8
9


10
11
12
13
14
15
def ps_roi_pool(
    input: Tensor,
    boxes: Tensor,
    output_size: int,
    spatial_scale: float = 1.0,
) -> Tensor:
16
17
18
19
    """
    Performs Position-Sensitive Region of Interest (RoI) Pool operator
    described in R-FCN

20
    Args:
21
22
        input (Tensor[N, C, H, W]): The input tensor, i.e. a batch with ``N`` elements. Each element
            contains ``C`` feature maps of dimensions ``H x W``.
23
        boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2)
24
25
            format where the regions will be taken from.
            The coordinate must satisfy ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
26
27
28
29
30
31
            If a single Tensor is passed, then the first column should
            contain the index of the corresponding element in the batch, i.e. a number in ``[0, N - 1]``.
            If a list of Tensors is passed, then each Tensor will correspond to the boxes for an element i
            in the batch.
        output_size (int or Tuple[int, int]): the size of the output (in bins or pixels) after the pooling
            is performed, as (height, width).
32
33
34
35
        spatial_scale (float): a scaling factor that maps the input coordinates to
            the box coordinates. Default: 1.0

    Returns:
36
        Tensor[K, C / (output_size[0] * output_size[1]), output_size[0], output_size[1]]: The pooled RoIs.
37
    """
38
    _assert_has_ops()
39
    check_roi_boxes_shape(boxes)
40
41
42
43
44
45
46
47
48
49
50
51
    rois = boxes
    output_size = _pair(output_size)
    if not isinstance(rois, torch.Tensor):
        rois = convert_boxes_to_roi_format(rois)
    output, _ = torch.ops.torchvision.ps_roi_pool(input, rois, spatial_scale,
                                                  output_size[0],
                                                  output_size[1])
    return output


class PSRoIPool(nn.Module):
    """
52
    See :func:`ps_roi_pool`.
53
    """
54
    def __init__(self, output_size: int, spatial_scale: float):
55
56
57
58
        super(PSRoIPool, self).__init__()
        self.output_size = output_size
        self.spatial_scale = spatial_scale

59
    def forward(self, input: Tensor, rois: Tensor) -> Tensor:
60
61
        return ps_roi_pool(input, rois, self.output_size, self.spatial_scale)

62
    def __repr__(self) -> str:
63
64
65
66
67
        tmpstr = self.__class__.__name__ + '('
        tmpstr += 'output_size=' + str(self.output_size)
        tmpstr += ', spatial_scale=' + str(self.spatial_scale)
        tmpstr += ')'
        return tmpstr