ps_roi_align.py 3.32 KB
Newer Older
1
2
3
4
5
import torch
from torch import nn, Tensor

from torch.nn.modules.utils import _pair

6
from torchvision.extension import _assert_has_ops
7
from ._utils import convert_boxes_to_roi_format, check_roi_boxes_shape
8
9


10
11
12
13
14
15
16
def ps_roi_align(
    input: Tensor,
    boxes: Tensor,
    output_size: int,
    spatial_scale: float = 1.0,
    sampling_ratio: int = -1,
) -> Tensor:
17
18
19
20
    """
    Performs Position-Sensitive Region of Interest (RoI) Align operator
    mentioned in Light-Head R-CNN.

21
    Args:
22
23
        input (Tensor[N, C, H, W]): The input tensor, i.e. a batch with ``N`` elements. Each element
            contains ``C`` feature maps of dimensions ``H x W``.
24
        boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2)
25
26
            format where the regions will be taken from.
            The coordinate must satisfy ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
27
28
29
30
31
32
            If a single Tensor is passed, then the first column should
            contain the index of the corresponding element in the batch, i.e. a number in ``[0, N - 1]``.
            If a list of Tensors is passed, then each Tensor will correspond to the boxes for an element i
            in the batch.
        output_size (int or Tuple[int, int]): the size of the output (in bins or pixels) after the pooling
            is performed, as (height, width).
33
34
35
        spatial_scale (float): a scaling factor that maps the input coordinates to
            the box coordinates. Default: 1.0
        sampling_ratio (int): number of sampling points in the interpolation grid
36
37
38
39
            used to compute the output value of each pooled output bin. If > 0,
            then exactly ``sampling_ratio x sampling_ratio`` sampling points per bin are used. If
            <= 0, then an adaptive number of grid points are used (computed as
            ``ceil(roi_width / output_width)``, and likewise for height). Default: -1
40
41

    Returns:
42
        Tensor[K, C / (output_size[0] * output_size[1]), output_size[0], output_size[1]]: The pooled RoIs
43
    """
44
    _assert_has_ops()
45
    check_roi_boxes_shape(boxes)
46
47
48
49
50
51
52
53
54
55
56
57
58
    rois = boxes
    output_size = _pair(output_size)
    if not isinstance(rois, torch.Tensor):
        rois = convert_boxes_to_roi_format(rois)
    output, _ = torch.ops.torchvision.ps_roi_align(input, rois, spatial_scale,
                                                   output_size[0],
                                                   output_size[1],
                                                   sampling_ratio)
    return output


class PSRoIAlign(nn.Module):
    """
59
    See :func:`ps_roi_align`.
60
    """
61
62
63
64
65
66
    def __init__(
        self,
        output_size: int,
        spatial_scale: float,
        sampling_ratio: int,
    ):
67
68
69
70
71
        super(PSRoIAlign, self).__init__()
        self.output_size = output_size
        self.spatial_scale = spatial_scale
        self.sampling_ratio = sampling_ratio

72
    def forward(self, input: Tensor, rois: Tensor) -> Tensor:
73
74
75
        return ps_roi_align(input, rois, self.output_size, self.spatial_scale,
                            self.sampling_ratio)

76
    def __repr__(self) -> str:
77
78
79
80
81
82
        tmpstr = self.__class__.__name__ + '('
        tmpstr += 'output_size=' + str(self.output_size)
        tmpstr += ', spatial_scale=' + str(self.spatial_scale)
        tmpstr += ', sampling_ratio=' + str(self.sampling_ratio)
        tmpstr += ')'
        return tmpstr