ssd.py 26.4 KB
Newer Older
1
2
3
4
import warnings
from collections import OrderedDict
from typing import Any, Dict, List, Optional, Tuple

5
6
7
8
9
10
11
import torch
import torch.nn.functional as F
from torch import nn, Tensor

from ..._internally_replaced_utils import load_state_dict_from_url
from ...ops import boxes as box_ops
from .. import vgg
12
13
14
15
16
from . import _utils as det_utils
from .anchor_utils import DefaultBoxGenerator
from .backbone_utils import _validate_trainable_layers
from .transform import GeneralizedRCNNTransform

17
__all__ = ["SSD", "ssd300_vgg16"]
18
19

model_urls = {
20
    "ssd300_vgg16_coco": "https://download.pytorch.org/models/ssd300_vgg16_coco-b556d3b4.pth",
21
22
23
24
25
}

backbone_urls = {
    # We port the features of a VGG16 backbone trained by amdegroot because unlike the one on TorchVision, it uses the
    # same input standardization method as the paper. Ref: https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth
26
    "vgg16_features": "https://download.pytorch.org/models/vgg16_features-amdegroot.pth"
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
}


def _xavier_init(conv: nn.Module):
    for layer in conv.modules():
        if isinstance(layer, nn.Conv2d):
            torch.nn.init.xavier_uniform_(layer.weight)
            if layer.bias is not None:
                torch.nn.init.constant_(layer.bias, 0.0)


class SSDHead(nn.Module):
    def __init__(self, in_channels: List[int], num_anchors: List[int], num_classes: int):
        super().__init__()
        self.classification_head = SSDClassificationHead(in_channels, num_anchors, num_classes)
        self.regression_head = SSDRegressionHead(in_channels, num_anchors)

    def forward(self, x: List[Tensor]) -> Dict[str, Tensor]:
        return {
46
47
            "bbox_regression": self.regression_head(x),
            "cls_logits": self.classification_head(x),
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
        }


class SSDScoringHead(nn.Module):
    def __init__(self, module_list: nn.ModuleList, num_columns: int):
        super().__init__()
        self.module_list = module_list
        self.num_columns = num_columns

    def _get_result_from_module_list(self, x: Tensor, idx: int) -> Tensor:
        """
        This is equivalent to self.module_list[idx](x),
        but torchscript doesn't support this yet
        """
        num_blocks = len(self.module_list)
        if idx < 0:
            idx += num_blocks
        out = x
66
        for i, module in enumerate(self.module_list):
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
            if i == idx:
                out = module(x)
        return out

    def forward(self, x: List[Tensor]) -> Tensor:
        all_results = []

        for i, features in enumerate(x):
            results = self._get_result_from_module_list(features, i)

            # Permute output from (N, A * K, H, W) to (N, HWA, K).
            N, _, H, W = results.shape
            results = results.view(N, -1, self.num_columns, H, W)
            results = results.permute(0, 3, 4, 1, 2)
            results = results.reshape(N, -1, self.num_columns)  # Size=(N, HWA, K)

            all_results.append(results)

        return torch.cat(all_results, dim=1)


class SSDClassificationHead(SSDScoringHead):
    def __init__(self, in_channels: List[int], num_anchors: List[int], num_classes: int):
        cls_logits = nn.ModuleList()
        for channels, anchors in zip(in_channels, num_anchors):
            cls_logits.append(nn.Conv2d(channels, num_classes * anchors, kernel_size=3, padding=1))
        _xavier_init(cls_logits)
        super().__init__(cls_logits, num_classes)


class SSDRegressionHead(SSDScoringHead):
    def __init__(self, in_channels: List[int], num_anchors: List[int]):
        bbox_reg = nn.ModuleList()
        for channels, anchors in zip(in_channels, num_anchors):
            bbox_reg.append(nn.Conv2d(channels, 4 * anchors, kernel_size=3, padding=1))
        _xavier_init(bbox_reg)
        super().__init__(bbox_reg, 4)


class SSD(nn.Module):
    """
    Implements SSD architecture from `"SSD: Single Shot MultiBox Detector" <https://arxiv.org/abs/1512.02325>`_.

    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes but they will be resized
    to a fixed size before passing it to the backbone.

    The behavior of the model changes depending if it is in training or evaluation mode.

    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
    containing:
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (Int64Tensor[N]): the class label for each ground-truth box

    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
127
128
    follows, where ``N`` is the number of detections:

129
130
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
131
132
        - labels (Int64Tensor[N]): the predicted labels for each detection
        - scores (Tensor[N]): the scores for each detection
133
134
135
136
137
138
139
140
141

    Args:
        backbone (nn.Module): the network used to compute the features for the model.
            It should contain an out_channels attribute with the list of the output channels of
            each feature map. The backbone should return a single Tensor or an OrderedDict[Tensor].
        anchor_generator (DefaultBoxGenerator): module that generates the default boxes for a
            set of feature maps.
        size (Tuple[int, int]): the width and height to which images will be rescaled before feeding them
            to the backbone.
142
        num_classes (int): number of output classes of the model (including the background).
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
        image_mean (Tuple[float, float, float]): mean values used for input normalization.
            They are generally the mean values of the dataset on which the backbone has been trained
            on
        image_std (Tuple[float, float, float]): std values used for input normalization.
            They are generally the std values of the dataset on which the backbone has been trained on
        head (nn.Module, optional): Module run on top of the backbone features. Defaults to a module containing
            a classification and regression module.
        score_thresh (float): Score threshold used for postprocessing the detections.
        nms_thresh (float): NMS threshold used for postprocessing the detections.
        detections_per_img (int): Number of best detections to keep after NMS.
        iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
            considered as positive during training.
        topk_candidates (int): Number of best detections to keep before NMS.
        positive_fraction (float): a number between 0 and 1 which indicates the proportion of positive
            proposals used during the training of the classification head. It is used to estimate the negative to
            positive ratio.
    """
160

161
    __annotations__ = {
162
163
        "box_coder": det_utils.BoxCoder,
        "proposal_matcher": det_utils.Matcher,
164
165
    }

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    def __init__(
        self,
        backbone: nn.Module,
        anchor_generator: DefaultBoxGenerator,
        size: Tuple[int, int],
        num_classes: int,
        image_mean: Optional[List[float]] = None,
        image_std: Optional[List[float]] = None,
        head: Optional[nn.Module] = None,
        score_thresh: float = 0.01,
        nms_thresh: float = 0.45,
        detections_per_img: int = 200,
        iou_thresh: float = 0.5,
        topk_candidates: int = 400,
        positive_fraction: float = 0.25,
    ):
182
183
184
185
186
187
        super().__init__()

        self.backbone = backbone

        self.anchor_generator = anchor_generator

188
        self.box_coder = det_utils.BoxCoder(weights=(10.0, 10.0, 5.0, 5.0))
189
190

        if head is None:
191
            if hasattr(backbone, "out_channels"):
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
                out_channels = backbone.out_channels
            else:
                out_channels = det_utils.retrieve_out_channels(backbone, size)

            assert len(out_channels) == len(anchor_generator.aspect_ratios)

            num_anchors = self.anchor_generator.num_anchors_per_location()
            head = SSDHead(out_channels, num_anchors, num_classes)
        self.head = head

        self.proposal_matcher = det_utils.SSDMatcher(iou_thresh)

        if image_mean is None:
            image_mean = [0.485, 0.456, 0.406]
        if image_std is None:
            image_std = [0.229, 0.224, 0.225]
208
209
210
        self.transform = GeneralizedRCNNTransform(
            min(size), max(size), image_mean, image_std, size_divisible=1, fixed_size=size
        )
211
212
213
214
215
216
217
218
219
220
221

        self.score_thresh = score_thresh
        self.nms_thresh = nms_thresh
        self.detections_per_img = detections_per_img
        self.topk_candidates = topk_candidates
        self.neg_to_pos_ratio = (1.0 - positive_fraction) / positive_fraction

        # used only on torchscript mode
        self._has_warned = False

    @torch.jit.unused
222
223
224
    def eager_outputs(
        self, losses: Dict[str, Tensor], detections: List[Dict[str, Tensor]]
    ) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]:
225
226
227
228
229
        if self.training:
            return losses

        return detections

230
231
232
233
234
235
236
237
238
    def compute_loss(
        self,
        targets: List[Dict[str, Tensor]],
        head_outputs: Dict[str, Tensor],
        anchors: List[Tensor],
        matched_idxs: List[Tensor],
    ) -> Dict[str, Tensor]:
        bbox_regression = head_outputs["bbox_regression"]
        cls_logits = head_outputs["cls_logits"]
239
240
241
242
243

        # Match original targets with default boxes
        num_foreground = 0
        bbox_loss = []
        cls_targets = []
244
245
246
247
248
249
250
        for (
            targets_per_image,
            bbox_regression_per_image,
            cls_logits_per_image,
            anchors_per_image,
            matched_idxs_per_image,
        ) in zip(targets, bbox_regression, cls_logits, anchors, matched_idxs):
251
252
253
254
255
256
            # produce the matching between boxes and targets
            foreground_idxs_per_image = torch.where(matched_idxs_per_image >= 0)[0]
            foreground_matched_idxs_per_image = matched_idxs_per_image[foreground_idxs_per_image]
            num_foreground += foreground_matched_idxs_per_image.numel()

            # Calculate regression loss
257
            matched_gt_boxes_per_image = targets_per_image["boxes"][foreground_matched_idxs_per_image]
258
259
260
            bbox_regression_per_image = bbox_regression_per_image[foreground_idxs_per_image, :]
            anchors_per_image = anchors_per_image[foreground_idxs_per_image, :]
            target_regression = self.box_coder.encode_single(matched_gt_boxes_per_image, anchors_per_image)
261
262
263
            bbox_loss.append(
                torch.nn.functional.smooth_l1_loss(bbox_regression_per_image, target_regression, reduction="sum")
            )
264
265

            # Estimate ground truth for class targets
266
267
268
269
270
271
272
273
            gt_classes_target = torch.zeros(
                (cls_logits_per_image.size(0),),
                dtype=targets_per_image["labels"].dtype,
                device=targets_per_image["labels"].device,
            )
            gt_classes_target[foreground_idxs_per_image] = targets_per_image["labels"][
                foreground_matched_idxs_per_image
            ]
274
275
276
277
278
279
280
            cls_targets.append(gt_classes_target)

        bbox_loss = torch.stack(bbox_loss)
        cls_targets = torch.stack(cls_targets)

        # Calculate classification loss
        num_classes = cls_logits.size(-1)
281
282
283
        cls_loss = F.cross_entropy(cls_logits.view(-1, num_classes), cls_targets.view(-1), reduction="none").view(
            cls_targets.size()
        )
284
285
286
287
288
289

        # Hard Negative Sampling
        foreground_idxs = cls_targets > 0
        num_negative = self.neg_to_pos_ratio * foreground_idxs.sum(1, keepdim=True)
        # num_negative[num_negative < self.neg_to_pos_ratio] = self.neg_to_pos_ratio
        negative_loss = cls_loss.clone()
290
        negative_loss[foreground_idxs] = -float("inf")  # use -inf to detect positive values that creeped in the sample
291
292
293
294
295
296
        values, idx = negative_loss.sort(1, descending=True)
        # background_idxs = torch.logical_and(idx.sort(1)[1] < num_negative, torch.isfinite(values))
        background_idxs = idx.sort(1)[1] < num_negative

        N = max(1, num_foreground)
        return {
297
298
            "bbox_regression": bbox_loss.sum() / N,
            "classification": (cls_loss[foreground_idxs].sum() + cls_loss[background_idxs].sum()) / N,
299
300
        }

301
302
303
    def forward(
        self, images: List[Tensor], targets: Optional[List[Dict[str, Tensor]]] = None
    ) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]:
304
305
306
307
308
309
310
311
312
        if self.training and targets is None:
            raise ValueError("In training mode, targets should be passed")

        if self.training:
            assert targets is not None
            for target in targets:
                boxes = target["boxes"]
                if isinstance(boxes, torch.Tensor):
                    if len(boxes.shape) != 2 or boxes.shape[-1] != 4:
313
314
315
                        raise ValueError(
                            "Expected target boxes to be a tensor" "of shape [N, 4], got {:}.".format(boxes.shape)
                        )
316
                else:
317
                    raise ValueError("Expected target boxes to be of type " "Tensor, got {:}.".format(type(boxes)))
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

        # get the original image sizes
        original_image_sizes: List[Tuple[int, int]] = []
        for img in images:
            val = img.shape[-2:]
            assert len(val) == 2
            original_image_sizes.append((val[0], val[1]))

        # transform the input
        images, targets = self.transform(images, targets)

        # Check for degenerate boxes
        if targets is not None:
            for target_idx, target in enumerate(targets):
                boxes = target["boxes"]
                degenerate_boxes = boxes[:, 2:] <= boxes[:, :2]
                if degenerate_boxes.any():
                    bb_idx = torch.where(degenerate_boxes.any(dim=1))[0][0]
                    degen_bb: List[float] = boxes[bb_idx].tolist()
337
338
339
340
                    raise ValueError(
                        "All bounding boxes should have positive height and width."
                        " Found invalid box {} for target at index {}.".format(degen_bb, target_idx)
                    )
341
342
343
344

        # get the features from the backbone
        features = self.backbone(images.tensors)
        if isinstance(features, torch.Tensor):
345
            features = OrderedDict([("0", features)])
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

        features = list(features.values())

        # compute the ssd heads outputs using the features
        head_outputs = self.head(features)

        # create the set of anchors
        anchors = self.anchor_generator(images, features)

        losses = {}
        detections: List[Dict[str, Tensor]] = []
        if self.training:
            assert targets is not None

            matched_idxs = []
            for anchors_per_image, targets_per_image in zip(anchors, targets):
362
363
364
365
                if targets_per_image["boxes"].numel() == 0:
                    matched_idxs.append(
                        torch.full((anchors_per_image.size(0),), -1, dtype=torch.int64, device=anchors_per_image.device)
                    )
366
367
                    continue

368
                match_quality_matrix = box_ops.box_iou(targets_per_image["boxes"], anchors_per_image)
369
370
371
372
373
374
375
376
377
378
379
380
381
382
                matched_idxs.append(self.proposal_matcher(match_quality_matrix))

            losses = self.compute_loss(targets, head_outputs, anchors, matched_idxs)
        else:
            detections = self.postprocess_detections(head_outputs, anchors, images.image_sizes)
            detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes)

        if torch.jit.is_scripting():
            if not self._has_warned:
                warnings.warn("SSD always returns a (Losses, Detections) tuple in scripting")
                self._has_warned = True
            return losses, detections
        return self.eager_outputs(losses, detections)

383
384
385
386
387
    def postprocess_detections(
        self, head_outputs: Dict[str, Tensor], image_anchors: List[Tensor], image_shapes: List[Tuple[int, int]]
    ) -> List[Dict[str, Tensor]]:
        bbox_regression = head_outputs["bbox_regression"]
        pred_scores = F.softmax(head_outputs["cls_logits"], dim=-1)
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

        num_classes = pred_scores.size(-1)
        device = pred_scores.device

        detections: List[Dict[str, Tensor]] = []

        for boxes, scores, anchors, image_shape in zip(bbox_regression, pred_scores, image_anchors, image_shapes):
            boxes = self.box_coder.decode_single(boxes, anchors)
            boxes = box_ops.clip_boxes_to_image(boxes, image_shape)

            image_boxes = []
            image_scores = []
            image_labels = []
            for label in range(1, num_classes):
                score = scores[:, label]

                keep_idxs = score > self.score_thresh
                score = score[keep_idxs]
                box = boxes[keep_idxs]

                # keep only topk scoring predictions
                num_topk = min(self.topk_candidates, score.size(0))
                score, idxs = score.topk(num_topk)
                box = box[idxs]

                image_boxes.append(box)
                image_scores.append(score)
                image_labels.append(torch.full_like(score, fill_value=label, dtype=torch.int64, device=device))

            image_boxes = torch.cat(image_boxes, dim=0)
            image_scores = torch.cat(image_scores, dim=0)
            image_labels = torch.cat(image_labels, dim=0)

            # non-maximum suppression
            keep = box_ops.batched_nms(image_boxes, image_scores, image_labels, self.nms_thresh)
423
424
425
426
427
428
429
430
431
            keep = keep[: self.detections_per_img]

            detections.append(
                {
                    "boxes": image_boxes[keep],
                    "scores": image_scores[keep],
                    "labels": image_labels[keep],
                }
            )
432
433
434
435
        return detections


class SSDFeatureExtractorVGG(nn.Module):
436
    def __init__(self, backbone: nn.Module, highres: bool):
437
438
439
440
441
442
443
444
445
446
447
        super().__init__()

        _, _, maxpool3_pos, maxpool4_pos, _ = (i for i, layer in enumerate(backbone) if isinstance(layer, nn.MaxPool2d))

        # Patch ceil_mode for maxpool3 to get the same WxH output sizes as the paper
        backbone[maxpool3_pos].ceil_mode = True

        # parameters used for L2 regularization + rescaling
        self.scale_weight = nn.Parameter(torch.ones(512) * 20)

        # Multiple Feature maps - page 4, Fig 2 of SSD paper
448
        self.features = nn.Sequential(*backbone[:maxpool4_pos])  # until conv4_3
449
450

        # SSD300 case - page 4, Fig 2 of SSD paper
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
        extra = nn.ModuleList(
            [
                nn.Sequential(
                    nn.Conv2d(1024, 256, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(256, 512, kernel_size=3, padding=1, stride=2),  # conv8_2
                    nn.ReLU(inplace=True),
                ),
                nn.Sequential(
                    nn.Conv2d(512, 128, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2),  # conv9_2
                    nn.ReLU(inplace=True),
                ),
                nn.Sequential(
                    nn.Conv2d(256, 128, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(128, 256, kernel_size=3),  # conv10_2
                    nn.ReLU(inplace=True),
                ),
                nn.Sequential(
                    nn.Conv2d(256, 128, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(128, 256, kernel_size=3),  # conv11_2
                    nn.ReLU(inplace=True),
                ),
            ]
        )
479
480
        if highres:
            # Additional layers for the SSD512 case. See page 11, footernote 5.
481
482
483
484
485
486
487
488
            extra.append(
                nn.Sequential(
                    nn.Conv2d(256, 128, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(128, 256, kernel_size=4),  # conv12_2
                    nn.ReLU(inplace=True),
                )
            )
489
490
491
492
493
494
495
        _xavier_init(extra)

        fc = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=False),  # add modified maxpool5
            nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=3, padding=6, dilation=6),  # FC6 with atrous
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=1024, out_channels=1024, kernel_size=1),  # FC7
496
            nn.ReLU(inplace=True),
497
498
        )
        _xavier_init(fc)
499
500
501
502
503
504
505
        extra.insert(
            0,
            nn.Sequential(
                *backbone[maxpool4_pos:-1],  # until conv5_3, skip maxpool5
                fc,
            ),
        )
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
        self.extra = extra

    def forward(self, x: Tensor) -> Dict[str, Tensor]:
        # L2 regularization + Rescaling of 1st block's feature map
        x = self.features(x)
        rescaled = self.scale_weight.view(1, -1, 1, 1) * F.normalize(x)
        output = [rescaled]

        # Calculating Feature maps for the rest blocks
        for block in self.extra:
            x = block(x)
            output.append(x)

        return OrderedDict([(str(i), v) for i, v in enumerate(output)])


522
def _vgg_extractor(backbone_name: str, highres: bool, progress: bool, pretrained: bool, trainable_layers: int):
523
524
    if backbone_name in backbone_urls:
        # Use custom backbones more appropriate for SSD
525
        arch = backbone_name.split("_")[0]
526
527
528
529
530
531
532
533
534
535
536
537
538
539
        backbone = vgg.__dict__[arch](pretrained=False, progress=progress).features
        if pretrained:
            state_dict = load_state_dict_from_url(backbone_urls[backbone_name], progress=progress)
            backbone.load_state_dict(state_dict)
    else:
        # Use standard backbones from TorchVision
        backbone = vgg.__dict__[backbone_name](pretrained=pretrained, progress=progress).features

    # Gather the indices of maxpools. These are the locations of output blocks.
    stage_indices = [i for i, b in enumerate(backbone) if isinstance(b, nn.MaxPool2d)]
    num_stages = len(stage_indices)

    # find the index of the layer from which we wont freeze
    assert 0 <= trainable_layers <= num_stages
540
    freeze_before = len(backbone) if trainable_layers == 0 else stage_indices[num_stages - trainable_layers]
541
542
543
544
545

    for b in backbone[:freeze_before]:
        for parameter in b.parameters():
            parameter.requires_grad_(False)

546
    return SSDFeatureExtractorVGG(backbone, highres)
547
548


549
550
551
552
553
554
555
556
def ssd300_vgg16(
    pretrained: bool = False,
    progress: bool = True,
    num_classes: int = 91,
    pretrained_backbone: bool = True,
    trainable_backbone_layers: Optional[int] = None,
    **kwargs: Any,
):
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
    """Constructs an SSD model with input size 300x300 and a VGG16 backbone.

    Reference: `"SSD: Single Shot MultiBox Detector" <https://arxiv.org/abs/1512.02325>`_.

    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes but they will be resized
    to a fixed size before passing it to the backbone.

    The behavior of the model changes depending if it is in training or evaluation mode.

    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
    containing:

        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (Int64Tensor[N]): the class label for each ground-truth box

    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
    follows, where ``N`` is the number of detections:

        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (Int64Tensor[N]): the predicted labels for each detection
        - scores (Tensor[N]): the scores for each detection
585
586
587
588
589

    Example:

        >>> model = torchvision.models.detection.ssd300_vgg16(pretrained=True)
        >>> model.eval()
590
        >>> x = [torch.rand(3, 300, 300), torch.rand(3, 500, 400)]
591
592
593
594
595
596
597
598
599
600
        >>> predictions = model(x)

    Args:
        pretrained (bool): If True, returns a model pre-trained on COCO train2017
        progress (bool): If True, displays a progress bar of the download to stderr
        num_classes (int): number of output classes of the model (including the background)
        pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet
        trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.
            Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable.
    """
601
602
603
    if "size" in kwargs:
        warnings.warn("The size of the model is already fixed; ignoring the argument.")

604
    trainable_backbone_layers = _validate_trainable_layers(
605
606
        pretrained or pretrained_backbone, trainable_backbone_layers, 5, 5
    )
607
608
609
610
611

    if pretrained:
        # no need to download the backbone if pretrained is set
        pretrained_backbone = False

612
    backbone = _vgg_extractor("vgg16_features", False, progress, pretrained_backbone, trainable_backbone_layers)
613
614
615
616
617
    anchor_generator = DefaultBoxGenerator(
        [[2], [2, 3], [2, 3], [2, 3], [2], [2]],
        scales=[0.07, 0.15, 0.33, 0.51, 0.69, 0.87, 1.05],
        steps=[8, 16, 32, 64, 100, 300],
    )
618
619
620
621
622
623
624
625

    defaults = {
        # Rescale the input in a way compatible to the backbone
        "image_mean": [0.48235, 0.45882, 0.40784],
        "image_std": [1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0],  # undo the 0-1 scaling of toTensor
    }
    kwargs = {**defaults, **kwargs}
    model = SSD(backbone, anchor_generator, (300, 300), num_classes, **kwargs)
626
    if pretrained:
627
        weights_name = "ssd300_vgg16_coco"
628
629
630
631
632
        if model_urls.get(weights_name, None) is None:
            raise ValueError("No checkpoint is available for model {}".format(weights_name))
        state_dict = load_state_dict_from_url(model_urls[weights_name], progress=progress)
        model.load_state_dict(state_dict)
    return model