kinetics.py 13.2 KB
Newer Older
1
import csv
2
import os
3
import time
4
import urllib
5
6
7
import warnings
from functools import partial
from multiprocessing import Pool
8
9
10
from os import path
from typing import Any, Callable, Dict, Optional, Tuple

11
from torch import Tensor
12

13
from .folder import find_classes, make_dataset
14
from .utils import download_and_extract_archive, download_url, verify_str_arg, check_integrity
15
from .video_utils import VideoClips
16
17
18
from .vision import VisionDataset


19
def _dl_wrap(tarpath: str, videopath: str, line: str) -> None:
20
21
22
23
    download_and_extract_archive(line, tarpath, videopath)


class Kinetics(VisionDataset):
24
    """`Generic Kinetics <https://deepmind.com/research/open-source/open-source-datasets/kinetics/>`_
25
26
    dataset.

27
    Kinetics-400/600/700 are action recognition video datasets.
28
29
30
31
32
33
34
35
36
37
38
    This dataset consider every video as a collection of video clips of fixed size, specified
    by ``frames_per_clip``, where the step in frames between each clip is given by
    ``step_between_clips``.

    To give an example, for 2 videos with 10 and 15 frames respectively, if ``frames_per_clip=5``
    and ``step_between_clips=5``, the dataset size will be (2 + 3) = 5, where the first two
    elements will come from video 1, and the next three elements from video 2.
    Note that we drop clips which do not have exactly ``frames_per_clip`` elements, so not all
    frames in a video might be present.

    Args:
39
40
        root (string): Root directory of the Kinetics Dataset.
            Directory should be structured as follows:
41
42
43
            .. code::

                root/
44
45
46
47
48
49
50
51
52
                ├── split
                │   ├──  class1
                │   │   ├──  clip1.mp4
                │   │   ├──  clip2.mp4
                │   │   ├──  clip3.mp4
                │   │   ├──  ...
                │   ├──  class2
                │   │   ├──   clipx.mp4
                │   │    └── ...
53

54
            Note: split is appended automatically using the split argument.
55
        frames_per_clip (int): number of frames in a clip
56
        num_classes (int): select between Kinetics-400 (default), Kinetics-600, and Kinetics-700
57
        split (str): split of the dataset to consider; supports ``"train"`` (default) ``"val"`` ``"test"``
58
        frame_rate (float): If omitted, interpolate different frame rate for each clip.
59
60
61
        step_between_clips (int): number of frames between each clip
        transform (callable, optional): A function/transform that  takes in a TxHxWxC video
            and returns a transformed version.
62
63
64
        download (bool): Download the official version of the dataset to root folder.
        num_workers (int): Use multiple workers for VideoClips creation
        num_download_workers (int): Use multiprocessing in order to speed up download.
65
66
67
        output_format (str, optional): The format of the output video tensors (before transforms).
            Can be either "THWC" or "TCHW" (default).
            Note that in most other utils and datasets, the default is actually "THWC".
68
69

    Returns:
70
71
        tuple: A 3-tuple with the following entries:

72
            - video (Tensor[T, C, H, W] or Tensor[T, H, W, C]): the `T` video frames in torch.uint8 tensor
73
            - audio(Tensor[K, L]): the audio frames, where `K` is the number of channels
74
              and `L` is the number of points in torch.float tensor
75
            - label (int): class of the video clip
76
77
78

    Raises:
        RuntimeError: If ``download is True`` and the video archives are already extracted.
79
80
    """

81
82
83
84
85
86
87
    _TAR_URLS = {
        "400": "https://s3.amazonaws.com/kinetics/400/{split}/k400_{split}_path.txt",
        "600": "https://s3.amazonaws.com/kinetics/600/{split}/k600_{split}_path.txt",
        "700": "https://s3.amazonaws.com/kinetics/700_2020/{split}/k700_2020_{split}_path.txt",
    }
    _ANNOTATION_URLS = {
        "400": "https://s3.amazonaws.com/kinetics/400/annotations/{split}.csv",
88
        "600": "https://s3.amazonaws.com/kinetics/600/annotations/{split}.csv",
89
90
91
92
93
94
95
96
97
        "700": "https://s3.amazonaws.com/kinetics/700_2020/annotations/{split}.csv",
    }

    def __init__(
        self,
        root: str,
        frames_per_clip: int,
        num_classes: str = "400",
        split: str = "train",
98
        frame_rate: Optional[int] = None,
99
100
101
102
103
104
        step_between_clips: int = 1,
        transform: Optional[Callable] = None,
        extensions: Tuple[str, ...] = ("avi", "mp4"),
        download: bool = False,
        num_download_workers: int = 1,
        num_workers: int = 1,
105
        _precomputed_metadata: Optional[Dict[str, Any]] = None,
106
107
108
109
110
111
        _video_width: int = 0,
        _video_height: int = 0,
        _video_min_dimension: int = 0,
        _audio_samples: int = 0,
        _audio_channels: int = 0,
        _legacy: bool = False,
112
        output_format: str = "TCHW",
113
114
115
116
117
118
119
120
121
    ) -> None:

        # TODO: support test
        self.num_classes = verify_str_arg(num_classes, arg="num_classes", valid_values=["400", "600", "700"])
        self.extensions = extensions
        self.num_download_workers = num_download_workers

        self.root = root
        self._legacy = _legacy
122

123
124
125
126
        if _legacy:
            print("Using legacy structure")
            self.split_folder = root
            self.split = "unknown"
127
            output_format = "THWC"
128
129
            if download:
                raise ValueError("Cannot download the videos using legacy_structure.")
130
131
        else:
            self.split_folder = path.join(root, split)
132
            self.split = verify_str_arg(split, arg="split", valid_values=["train", "val", "test"])
133
134
135
136
137

        if download:
            self.download_and_process_videos()

        super().__init__(self.root)
138

139
140
        self.classes, class_to_idx = find_classes(self.split_folder)
        self.samples = make_dataset(self.split_folder, class_to_idx, extensions, is_valid_file=None)
141
        video_list = [x[0] for x in self.samples]
142
143
144
145
146
147
        self.video_clips = VideoClips(
            video_list,
            frames_per_clip,
            step_between_clips,
            frame_rate,
            _precomputed_metadata,
148
149
150
151
152
            num_workers=num_workers,
            _video_width=_video_width,
            _video_height=_video_height,
            _video_min_dimension=_video_min_dimension,
            _audio_samples=_audio_samples,
153
            _audio_channels=_audio_channels,
154
            output_format=output_format,
155
        )
156
        self.transform = transform
157

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
    def download_and_process_videos(self) -> None:
        """Downloads all the videos to the _root_ folder in the expected format."""
        tic = time.time()
        self._download_videos()
        toc = time.time()
        print("Elapsed time for downloading in mins ", (toc - tic) / 60)
        self._make_ds_structure()
        toc2 = time.time()
        print("Elapsed time for processing in mins ", (toc2 - toc) / 60)
        print("Elapsed time overall in mins ", (toc2 - tic) / 60)

    def _download_videos(self) -> None:
        """download tarballs containing the video to "tars" folder and extract them into the _split_ folder where
        split is one of the official dataset splits.

        Raises:
            RuntimeError: if download folder exists, break to prevent downloading entire dataset again.
        """
        if path.exists(self.split_folder):
            raise RuntimeError(
                f"The directory {self.split_folder} already exists. "
                f"If you want to re-download or re-extract the images, delete the directory."
            )
        tar_path = path.join(self.root, "tars")
        file_list_path = path.join(self.root, "files")

        split_url = self._TAR_URLS[self.num_classes].format(split=self.split)
        split_url_filepath = path.join(file_list_path, path.basename(split_url))
        if not check_integrity(split_url_filepath):
            download_url(split_url, file_list_path)
188
189
        with open(split_url_filepath) as file:
            list_video_urls = [urllib.parse.quote(line, safe="/,:") for line in file.read().splitlines()]
190
191

        if self.num_download_workers == 1:
192
            for line in list_video_urls:
193
194
195
196
                download_and_extract_archive(line, tar_path, self.split_folder)
        else:
            part = partial(_dl_wrap, tar_path, self.split_folder)
            poolproc = Pool(self.num_download_workers)
197
            poolproc.map(part, list_video_urls)
198

199
    def _make_ds_structure(self) -> None:
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
        """move videos from
        split_folder/
            ├── clip1.avi
            ├── clip2.avi

        to the correct format as described below:
        split_folder/
            ├── class1
            │   ├── clip1.avi

        """
        annotation_path = path.join(self.root, "annotations")
        if not check_integrity(path.join(annotation_path, f"{self.split}.csv")):
            download_url(self._ANNOTATION_URLS[self.num_classes].format(split=self.split), annotation_path)
        annotations = path.join(annotation_path, f"{self.split}.csv")

        file_fmtstr = "{ytid}_{start:06}_{end:06}.mp4"
        with open(annotations) as csvfile:
            reader = csv.DictReader(csvfile)
            for row in reader:
                f = file_fmtstr.format(
                    ytid=row["youtube_id"],
                    start=int(row["time_start"]),
                    end=int(row["time_end"]),
                )
225
                label = row["label"].replace(" ", "_").replace("'", "").replace("(", "").replace(")", "")
226
227
228
229
                os.makedirs(path.join(self.split_folder, label), exist_ok=True)
                downloaded_file = path.join(self.split_folder, f)
                if path.isfile(downloaded_file):
                    os.replace(
230
231
                        downloaded_file,
                        path.join(self.split_folder, label, f),
232
233
                    )

234
    @property
235
    def metadata(self) -> Dict[str, Any]:
236
237
        return self.video_clips.metadata

238
    def __len__(self) -> int:
239
240
        return self.video_clips.num_clips()

241
    def __getitem__(self, idx: int) -> Tuple[Tensor, Tensor, int]:
242
243
244
        video, audio, info, video_idx = self.video_clips.get_clip(idx)
        label = self.samples[video_idx][1]

245
246
247
        if self.transform is not None:
            video = self.transform(video)

248
        return video, audio, label
249
250
251
252
253
254
255


class Kinetics400(Kinetics):
    """
    `Kinetics-400 <https://deepmind.com/research/open-source/open-source-datasets/kinetics/>`_
    dataset.

256
257
258
259
    .. warning::
        This class was deprecated in ``0.12`` and will be removed in ``0.14``. Please use
        ``Kinetics(..., num_classes='400')`` instead.

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    Kinetics-400 is an action recognition video dataset.
    This dataset consider every video as a collection of video clips of fixed size, specified
    by ``frames_per_clip``, where the step in frames between each clip is given by
    ``step_between_clips``.

    To give an example, for 2 videos with 10 and 15 frames respectively, if ``frames_per_clip=5``
    and ``step_between_clips=5``, the dataset size will be (2 + 3) = 5, where the first two
    elements will come from video 1, and the next three elements from video 2.
    Note that we drop clips which do not have exactly ``frames_per_clip`` elements, so not all
    frames in a video might be present.

    Internally, it uses a VideoClips object to handle clip creation.

    Args:
        root (string): Root directory of the Kinetics-400 Dataset. Should be structured as follows:

            .. code::

                root/
                ├── class1
                │   ├── clip1.avi
                │   ├── clip2.avi
                │   ├── clip3.mp4
                │   └── ...
                └── class2
                    ├── clipx.avi
                    └── ...

        frames_per_clip (int): number of frames in a clip
        step_between_clips (int): number of frames between each clip
        transform (callable, optional): A function/transform that  takes in a TxHxWxC video
            and returns a transformed version.

    Returns:
        tuple: A 3-tuple with the following entries:

            - video (Tensor[T, H, W, C]): the `T` video frames
            - audio(Tensor[K, L]): the audio frames, where `K` is the number of channels
              and `L` is the number of points
            - label (int): class of the video clip
    """

    def __init__(
        self,
        root: str,
        frames_per_clip: int,
        num_classes: Any = None,
        split: Any = None,
        download: Any = None,
        num_download_workers: Any = None,
310
        **kwargs: Any,
311
    ) -> None:
312
        warnings.warn(
313
314
            "The Kinetics400 class is deprecated since 0.12 and will be removed in 0.14."
            "Please use Kinetics(..., num_classes='400') instead."
315
            "Note that Kinetics(..., num_classes='400') returns video in a Tensor[T, C, H, W] format."
316
        )
317
318
319
320
321
322
        if any(value is not None for value in (num_classes, split, download, num_download_workers)):
            raise RuntimeError(
                "Usage of 'num_classes', 'split', 'download', or 'num_download_workers' is not supported in "
                "Kinetics400. Please use Kinetics instead."
            )

323
        super().__init__(
324
325
326
327
328
            root=root,
            frames_per_clip=frames_per_clip,
            _legacy=True,
            **kwargs,
        )