retinanet.py 26.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
import math
from collections import OrderedDict
import warnings

import torch
import torch.nn as nn
from torch import Tensor
from torch.jit.annotations import Dict, List, Tuple

10
from ._utils import overwrite_eps
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
from ..utils import load_state_dict_from_url

from . import _utils as det_utils
from .anchor_utils import AnchorGenerator
from .transform import GeneralizedRCNNTransform
from .backbone_utils import resnet_fpn_backbone
from ...ops.feature_pyramid_network import LastLevelP6P7
from ...ops import sigmoid_focal_loss
from ...ops import boxes as box_ops


__all__ = [
    "RetinaNet", "retinanet_resnet50_fpn",
]


def _sum(x: List[Tensor]) -> Tensor:
    res = x[0]
    for i in x[1:]:
        res = res + i
    return res


class RetinaNetHead(nn.Module):
    """
    A regression and classification head for use in RetinaNet.

    Arguments:
        in_channels (int): number of channels of the input feature
        num_anchors (int): number of anchors to be predicted
        num_classes (int): number of classes to be predicted
    """

    def __init__(self, in_channels, num_anchors, num_classes):
        super().__init__()
        self.classification_head = RetinaNetClassificationHead(in_channels, num_anchors, num_classes)
        self.regression_head = RetinaNetRegressionHead(in_channels, num_anchors)

    def compute_loss(self, targets, head_outputs, anchors, matched_idxs):
        # type: (List[Dict[str, Tensor]], Dict[str, Tensor], List[Tensor], List[Tensor]) -> Dict[str, Tensor]
        return {
            'classification': self.classification_head.compute_loss(targets, head_outputs, matched_idxs),
            'bbox_regression': self.regression_head.compute_loss(targets, head_outputs, anchors, matched_idxs),
        }

    def forward(self, x):
        # type: (List[Tensor]) -> Dict[str, Tensor]
        return {
            'cls_logits': self.classification_head(x),
            'bbox_regression': self.regression_head(x)
        }


class RetinaNetClassificationHead(nn.Module):
    """
    A classification head for use in RetinaNet.

    Arguments:
        in_channels (int): number of channels of the input feature
        num_anchors (int): number of anchors to be predicted
        num_classes (int): number of classes to be predicted
    """

    def __init__(self, in_channels, num_anchors, num_classes, prior_probability=0.01):
        super().__init__()

        conv = []
        for _ in range(4):
            conv.append(nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1))
            conv.append(nn.ReLU())
        self.conv = nn.Sequential(*conv)

        for layer in self.conv.children():
            if isinstance(layer, nn.Conv2d):
                torch.nn.init.normal_(layer.weight, std=0.01)
                torch.nn.init.constant_(layer.bias, 0)

        self.cls_logits = nn.Conv2d(in_channels, num_anchors * num_classes, kernel_size=3, stride=1, padding=1)
        torch.nn.init.normal_(self.cls_logits.weight, std=0.01)
        torch.nn.init.constant_(self.cls_logits.bias, -math.log((1 - prior_probability) / prior_probability))

        self.num_classes = num_classes
        self.num_anchors = num_anchors

        # This is to fix using det_utils.Matcher.BETWEEN_THRESHOLDS in TorchScript.
        # TorchScript doesn't support class attributes.
        # https://github.com/pytorch/vision/pull/1697#issuecomment-630255584
        self.BETWEEN_THRESHOLDS = det_utils.Matcher.BETWEEN_THRESHOLDS

    def compute_loss(self, targets, head_outputs, matched_idxs):
        # type: (List[Dict[str, Tensor]], Dict[str, Tensor], List[Tensor]) -> Tensor
        losses = []

        cls_logits = head_outputs['cls_logits']

        for targets_per_image, cls_logits_per_image, matched_idxs_per_image in zip(targets, cls_logits, matched_idxs):
            # determine only the foreground
            foreground_idxs_per_image = matched_idxs_per_image >= 0
            num_foreground = foreground_idxs_per_image.sum()
110
111
112
113
114
115
116
117
118
119

            # create the target classification
            gt_classes_target = torch.zeros_like(cls_logits_per_image)
            gt_classes_target[
                foreground_idxs_per_image,
                targets_per_image['labels'][matched_idxs_per_image[foreground_idxs_per_image]]
            ] = 1.0

            # find indices for which anchors should be ignored
            valid_idxs_per_image = matched_idxs_per_image != self.BETWEEN_THRESHOLDS
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

            # compute the classification loss
            losses.append(sigmoid_focal_loss(
                cls_logits_per_image[valid_idxs_per_image],
                gt_classes_target[valid_idxs_per_image],
                reduction='sum',
            ) / max(1, num_foreground))

        return _sum(losses) / len(targets)

    def forward(self, x):
        # type: (List[Tensor]) -> Tensor
        all_cls_logits = []

        for features in x:
            cls_logits = self.conv(features)
            cls_logits = self.cls_logits(cls_logits)

            # Permute classification output from (N, A * K, H, W) to (N, HWA, K).
            N, _, H, W = cls_logits.shape
            cls_logits = cls_logits.view(N, -1, self.num_classes, H, W)
            cls_logits = cls_logits.permute(0, 3, 4, 1, 2)
            cls_logits = cls_logits.reshape(N, -1, self.num_classes)  # Size=(N, HWA, 4)

            all_cls_logits.append(cls_logits)

        return torch.cat(all_cls_logits, dim=1)


class RetinaNetRegressionHead(nn.Module):
    """
    A regression head for use in RetinaNet.

    Arguments:
        in_channels (int): number of channels of the input feature
        num_anchors (int): number of anchors to be predicted
    """
    __annotations__ = {
        'box_coder': det_utils.BoxCoder,
    }

    def __init__(self, in_channels, num_anchors):
        super().__init__()

        conv = []
        for _ in range(4):
            conv.append(nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1))
            conv.append(nn.ReLU())
        self.conv = nn.Sequential(*conv)

        self.bbox_reg = nn.Conv2d(in_channels, num_anchors * 4, kernel_size=3, stride=1, padding=1)
        torch.nn.init.normal_(self.bbox_reg.weight, std=0.01)
        torch.nn.init.zeros_(self.bbox_reg.bias)

        for layer in self.conv.children():
            if isinstance(layer, nn.Conv2d):
                torch.nn.init.normal_(layer.weight, std=0.01)
                torch.nn.init.zeros_(layer.bias)

        self.box_coder = det_utils.BoxCoder(weights=(1.0, 1.0, 1.0, 1.0))

    def compute_loss(self, targets, head_outputs, anchors, matched_idxs):
        # type: (List[Dict[str, Tensor]], Dict[str, Tensor], List[Tensor], List[Tensor]) -> Tensor
        losses = []

        bbox_regression = head_outputs['bbox_regression']

        for targets_per_image, bbox_regression_per_image, anchors_per_image, matched_idxs_per_image in \
                zip(targets, bbox_regression, anchors, matched_idxs):
            # determine only the foreground indices, ignore the rest
190
191
            foreground_idxs_per_image = torch.where(matched_idxs_per_image >= 0)[0]
            num_foreground = foreground_idxs_per_image.numel()
192
193

            # select only the foreground boxes
194
            matched_gt_boxes_per_image = targets_per_image['boxes'][matched_idxs_per_image[foreground_idxs_per_image]]
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
            bbox_regression_per_image = bbox_regression_per_image[foreground_idxs_per_image, :]
            anchors_per_image = anchors_per_image[foreground_idxs_per_image, :]

            # compute the regression targets
            target_regression = self.box_coder.encode_single(matched_gt_boxes_per_image, anchors_per_image)

            # compute the loss
            losses.append(torch.nn.functional.l1_loss(
                bbox_regression_per_image,
                target_regression,
                size_average=False
            ) / max(1, num_foreground))

        return _sum(losses) / max(1, len(targets))

    def forward(self, x):
        # type: (List[Tensor]) -> Tensor
        all_bbox_regression = []

        for features in x:
            bbox_regression = self.conv(features)
            bbox_regression = self.bbox_reg(bbox_regression)

            # Permute bbox regression output from (N, 4 * A, H, W) to (N, HWA, 4).
            N, _, H, W = bbox_regression.shape
            bbox_regression = bbox_regression.view(N, -1, 4, H, W)
            bbox_regression = bbox_regression.permute(0, 3, 4, 1, 2)
            bbox_regression = bbox_regression.reshape(N, -1, 4)  # Size=(N, HWA, 4)

            all_bbox_regression.append(bbox_regression)

        return torch.cat(all_bbox_regression, dim=1)


class RetinaNet(nn.Module):
    """
    Implements RetinaNet.

    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes.

    The behavior of the model changes depending if it is in training or evaluation mode.

    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
    containing:
        - boxes (FloatTensor[N, 4]): the ground-truth boxes in [x1, y1, x2, y2] format, with values
          between 0 and H and 0 and W
        - labels (Int64Tensor[N]): the class label for each ground-truth box

    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
    follows:
        - boxes (FloatTensor[N, 4]): the predicted boxes in [x1, y1, x2, y2] format, with values between
          0 and H and 0 and W
        - labels (Int64Tensor[N]): the predicted labels for each image
        - scores (Tensor[N]): the scores for each prediction

    Arguments:
        backbone (nn.Module): the network used to compute the features for the model.
            It should contain an out_channels attribute, which indicates the number of output
            channels that each feature map has (and it should be the same for all feature maps).
            The backbone should return a single Tensor or an OrderedDict[Tensor].
        num_classes (int): number of output classes of the model (excluding the background).
        min_size (int): minimum size of the image to be rescaled before feeding it to the backbone
        max_size (int): maximum size of the image to be rescaled before feeding it to the backbone
        image_mean (Tuple[float, float, float]): mean values used for input normalization.
            They are generally the mean values of the dataset on which the backbone has been trained
            on
        image_std (Tuple[float, float, float]): std values used for input normalization.
            They are generally the std values of the dataset on which the backbone has been trained on
        anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature
            maps.
        head (nn.Module): Module run on top of the feature pyramid.
            Defaults to a module containing a classification and regression module.
        score_thresh (float): Score threshold used for postprocessing the detections.
        nms_thresh (float): NMS threshold used for postprocessing the detections.
        detections_per_img (int): Number of best detections to keep after NMS.
        fg_iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
            considered as positive during training.
        bg_iou_thresh (float): maximum IoU between the anchor and the GT box so that they can be
            considered as negative during training.
279
        topk_candidates (int): Number of best detections to keep before NMS.
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

    Example:

        >>> import torch
        >>> import torchvision
        >>> from torchvision.models.detection import RetinaNet
        >>> from torchvision.models.detection.anchor_utils import AnchorGenerator
        >>> # load a pre-trained model for classification and return
        >>> # only the features
        >>> backbone = torchvision.models.mobilenet_v2(pretrained=True).features
        >>> # RetinaNet needs to know the number of
        >>> # output channels in a backbone. For mobilenet_v2, it's 1280
        >>> # so we need to add it here
        >>> backbone.out_channels = 1280
        >>>
        >>> # let's make the network generate 5 x 3 anchors per spatial
        >>> # location, with 5 different sizes and 3 different aspect
        >>> # ratios. We have a Tuple[Tuple[int]] because each feature
        >>> # map could potentially have different sizes and
        >>> # aspect ratios
        >>> anchor_generator = AnchorGenerator(
301
302
        >>>     sizes=((32, 64, 128, 256, 512),),
        >>>     aspect_ratios=((0.5, 1.0, 2.0),)
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
        >>> )
        >>>
        >>> # put the pieces together inside a RetinaNet model
        >>> model = RetinaNet(backbone,
        >>>                   num_classes=2,
        >>>                   anchor_generator=anchor_generator)
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)
    """
    __annotations__ = {
        'box_coder': det_utils.BoxCoder,
        'proposal_matcher': det_utils.Matcher,
    }

    def __init__(self, backbone, num_classes,
                 # transform parameters
                 min_size=800, max_size=1333,
                 image_mean=None, image_std=None,
                 # Anchor parameters
                 anchor_generator=None, head=None,
                 proposal_matcher=None,
                 score_thresh=0.05,
                 nms_thresh=0.5,
                 detections_per_img=300,
328
329
                 fg_iou_thresh=0.5, bg_iou_thresh=0.4,
                 topk_candidates=1000):
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
        super().__init__()

        if not hasattr(backbone, "out_channels"):
            raise ValueError(
                "backbone should contain an attribute out_channels "
                "specifying the number of output channels (assumed to be the "
                "same for all the levels)")
        self.backbone = backbone

        assert isinstance(anchor_generator, (AnchorGenerator, type(None)))

        if anchor_generator is None:
            anchor_sizes = tuple((x, int(x * 2 ** (1.0 / 3)), int(x * 2 ** (2.0 / 3))) for x in [32, 64, 128, 256, 512])
            aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
            anchor_generator = AnchorGenerator(
                anchor_sizes, aspect_ratios
            )
        self.anchor_generator = anchor_generator

        if head is None:
            head = RetinaNetHead(backbone.out_channels, anchor_generator.num_anchors_per_location()[0], num_classes)
        self.head = head

        if proposal_matcher is None:
            proposal_matcher = det_utils.Matcher(
                fg_iou_thresh,
                bg_iou_thresh,
                allow_low_quality_matches=True,
            )
        self.proposal_matcher = proposal_matcher

        self.box_coder = det_utils.BoxCoder(weights=(1.0, 1.0, 1.0, 1.0))

        if image_mean is None:
            image_mean = [0.485, 0.456, 0.406]
        if image_std is None:
            image_std = [0.229, 0.224, 0.225]
        self.transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std)

        self.score_thresh = score_thresh
        self.nms_thresh = nms_thresh
        self.detections_per_img = detections_per_img
372
        self.topk_candidates = topk_candidates
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389

        # used only on torchscript mode
        self._has_warned = False

    @torch.jit.unused
    def eager_outputs(self, losses, detections):
        # type: (Dict[str, Tensor], List[Dict[str, Tensor]]) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]
        if self.training:
            return losses

        return detections

    def compute_loss(self, targets, head_outputs, anchors):
        # type: (List[Dict[str, Tensor]], Dict[str, Tensor], List[Tensor]) -> Dict[str, Tensor]
        matched_idxs = []
        for anchors_per_image, targets_per_image in zip(anchors, targets):
            if targets_per_image['boxes'].numel() == 0:
390
                matched_idxs.append(torch.full((anchors_per_image.size(0),), -1, dtype=torch.int64))
391
392
393
394
395
396
397
398
                continue

            match_quality_matrix = box_ops.box_iou(targets_per_image['boxes'], anchors_per_image)
            matched_idxs.append(self.proposal_matcher(match_quality_matrix))

        return self.head.compute_loss(targets, head_outputs, anchors, matched_idxs)

    def postprocess_detections(self, head_outputs, anchors, image_shapes):
399
400
401
        # type: (Dict[str, List[Tensor]], List[List[Tensor]], List[Tuple[int, int]]) -> List[Dict[str, Tensor]]
        class_logits = head_outputs['cls_logits']
        box_regression = head_outputs['bbox_regression']
402

403
        num_images = len(image_shapes)
404
405
406

        detections = torch.jit.annotate(List[Dict[str, Tensor]], [])

407
408
409
410
        for index in range(num_images):
            box_regression_per_image = [br[index] for br in box_regression]
            logits_per_image = [cl[index] for cl in class_logits]
            anchors_per_image, image_shape = anchors[index], image_shapes[index]
411
412
413
414
415

            image_boxes = []
            image_scores = []
            image_labels = []

416
417
418
419
            for box_regression_per_level, logits_per_level, anchors_per_level in \
                    zip(box_regression_per_image, logits_per_image, anchors_per_image):
                num_classes = logits_per_level.shape[-1]

420
                # remove low scoring boxes
421
422
423
424
                scores_per_level = torch.sigmoid(logits_per_level).flatten()
                keep_idxs = scores_per_level > self.score_thresh
                scores_per_level = scores_per_level[keep_idxs]
                topk_idxs = torch.where(keep_idxs)[0]
425

426
427
428
429
                # keep only topk scoring predictions
                num_topk = min(self.topk_candidates, topk_idxs.size(0))
                scores_per_level, idxs = scores_per_level.topk(num_topk)
                topk_idxs = topk_idxs[idxs]
430

431
432
                anchor_idxs = topk_idxs // num_classes
                labels_per_level = topk_idxs % num_classes
433

434
435
436
437
438
439
440
                boxes_per_level = self.box_coder.decode_single(box_regression_per_level[anchor_idxs],
                                                               anchors_per_level[anchor_idxs])
                boxes_per_level = box_ops.clip_boxes_to_image(boxes_per_level, image_shape)

                image_boxes.append(boxes_per_level)
                image_scores.append(scores_per_level)
                image_labels.append(labels_per_level)
441

442
443
444
            image_boxes = torch.cat(image_boxes, dim=0)
            image_scores = torch.cat(image_scores, dim=0)
            image_labels = torch.cat(image_labels, dim=0)
445

446
447
448
            # non-maximum suppression
            keep = box_ops.batched_nms(image_boxes, image_scores, image_labels, self.nms_thresh)
            keep = keep[:self.detections_per_img]
449
450

            detections.append({
451
452
453
                'boxes': image_boxes[keep],
                'scores': image_scores[keep],
                'labels': image_labels[keep],
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
            })

        return detections

    def forward(self, images, targets=None):
        # type: (List[Tensor], Optional[List[Dict[str, Tensor]]]) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]
        """
        Arguments:
            images (list[Tensor]): images to be processed
            targets (list[Dict[Tensor]]): ground-truth boxes present in the image (optional)

        Returns:
            result (list[BoxList] or dict[Tensor]): the output from the model.
                During training, it returns a dict[Tensor] which contains the losses.
                During testing, it returns list[BoxList] contains additional fields
                like `scores`, `labels` and `mask` (for Mask R-CNN models).

        """
        if self.training and targets is None:
            raise ValueError("In training mode, targets should be passed")

        if self.training:
            assert targets is not None
            for target in targets:
                boxes = target["boxes"]
                if isinstance(boxes, torch.Tensor):
                    if len(boxes.shape) != 2 or boxes.shape[-1] != 4:
                        raise ValueError("Expected target boxes to be a tensor"
                                         "of shape [N, 4], got {:}.".format(
                                             boxes.shape))
                else:
                    raise ValueError("Expected target boxes to be of type "
                                     "Tensor, got {:}.".format(type(boxes)))

        # get the original image sizes
        original_image_sizes = torch.jit.annotate(List[Tuple[int, int]], [])
        for img in images:
            val = img.shape[-2:]
            assert len(val) == 2
            original_image_sizes.append((val[0], val[1]))

        # transform the input
        images, targets = self.transform(images, targets)

        # Check for degenerate boxes
        # TODO: Move this to a function
        if targets is not None:
            for target_idx, target in enumerate(targets):
                boxes = target["boxes"]
                degenerate_boxes = boxes[:, 2:] <= boxes[:, :2]
                if degenerate_boxes.any():
                    # print the first degenerate box
                    bb_idx = torch.where(degenerate_boxes.any(dim=1))[0][0]
                    degen_bb: List[float] = boxes[bb_idx].tolist()
                    raise ValueError("All bounding boxes should have positive height and width."
                                     " Found invalid box {} for target at index {}."
                                     .format(degen_bb, target_idx))

        # get the features from the backbone
        features = self.backbone(images.tensors)
        if isinstance(features, torch.Tensor):
            features = OrderedDict([('0', features)])

        # TODO: Do we want a list or a dict?
        features = list(features.values())

        # compute the retinanet heads outputs using the features
        head_outputs = self.head(features)

        # create the set of anchors
        anchors = self.anchor_generator(images, features)

        losses = {}
        detections = torch.jit.annotate(List[Dict[str, Tensor]], [])
        if self.training:
            assert targets is not None

            # compute the losses
            losses = self.compute_loss(targets, head_outputs, anchors)
        else:
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
            # recover level sizes
            num_anchors_per_level = [x.size(2) * x.size(3) for x in features]
            HW = 0
            for v in num_anchors_per_level:
                HW += v
            HWA = head_outputs['cls_logits'].size(1)
            A = HWA // HW
            num_anchors_per_level = [hw * A for hw in num_anchors_per_level]

            # split outputs per level
            split_head_outputs: Dict[str, List[Tensor]] = {}
            for k in head_outputs:
                split_head_outputs[k] = list(head_outputs[k].split(num_anchors_per_level, dim=1))
            split_anchors = [list(a.split(num_anchors_per_level)) for a in anchors]

549
            # compute the detections
550
            detections = self.postprocess_detections(split_head_outputs, split_anchors, images.image_sizes)
551
552
553
554
555
556
            detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes)

        if torch.jit.is_scripting():
            if not self._has_warned:
                warnings.warn("RetinaNet always returns a (Losses, Detections) tuple in scripting")
                self._has_warned = True
557
            return losses, detections
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
        return self.eager_outputs(losses, detections)


model_urls = {
    'retinanet_resnet50_fpn_coco':
        'https://download.pytorch.org/models/retinanet_resnet50_fpn_coco-eeacb38b.pth',
}


def retinanet_resnet50_fpn(pretrained=False, progress=True,
                           num_classes=91, pretrained_backbone=True, **kwargs):
    """
    Constructs a RetinaNet model with a ResNet-50-FPN backbone.

    The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each
    image, and should be in ``0-1`` range. Different images can have different sizes.

    The behavior of the model changes depending if it is in training or evaluation mode.

    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
    containing:
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with values
          between ``0`` and ``H`` and ``0`` and ``W``
        - labels (``Int64Tensor[N]``): the class label for each ground-truth box

    The model returns a ``Dict[Tensor]`` during training, containing the classification and regression
    losses.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as
    follows:
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with values between
          ``0`` and ``H`` and ``0`` and ``W``
        - labels (``Int64Tensor[N]``): the predicted labels for each image
        - scores (``Tensor[N]``): the scores or each prediction

    Example::

        >>> model = torchvision.models.detection.retinanet_resnet50_fpn(pretrained=True)
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

    Arguments:
        pretrained (bool): If True, returns a model pre-trained on COCO train2017
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    if pretrained:
        # no need to download the backbone if pretrained is set
        pretrained_backbone = False
    # skip P2 because it generates too many anchors (according to their paper)
    backbone = resnet_fpn_backbone('resnet50', pretrained_backbone,
                                   returned_layers=[2, 3, 4], extra_blocks=LastLevelP6P7(256, 256))
    model = RetinaNet(backbone, num_classes, **kwargs)
    if pretrained:
        state_dict = load_state_dict_from_url(model_urls['retinanet_resnet50_fpn_coco'],
                                              progress=progress)
        model.load_state_dict(state_dict)
616
        overwrite_eps(model, 0.0)
617
    return model