giou_loss.py 2.8 KB
Newer Older
Hu Ye's avatar
Hu Ye committed
1
import torch
2
3
from torch import Tensor

4
5
from ..utils import _log_api_usage_once

6
7
8
9
10
11

def _upcast(t: Tensor) -> Tensor:
    # Protects from numerical overflows in multiplications by upcasting to the equivalent higher type
    if t.dtype not in (torch.float32, torch.float64):
        return t.float()
    return t
Hu Ye's avatar
Hu Ye committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38


def generalized_box_iou_loss(
    boxes1: torch.Tensor,
    boxes2: torch.Tensor,
    reduction: str = "none",
    eps: float = 1e-7,
) -> torch.Tensor:
    """
    Original implementation from
    https://github.com/facebookresearch/fvcore/blob/bfff2ef/fvcore/nn/giou_loss.py

    Gradient-friendly IoU loss with an additional penalty that is non-zero when the
    boxes do not overlap and scales with the size of their smallest enclosing box.
    This loss is symmetric, so the boxes1 and boxes2 arguments are interchangeable.

    Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
    ``0 <= x1 < x2`` and ``0 <= y1 < y2``, and The two boxes should have the
    same dimensions.

    Args:
        boxes1 (Tensor[N, 4] or Tensor[4]): first set of boxes
        boxes2 (Tensor[N, 4] or Tensor[4]): second set of boxes
        reduction (string, optional): Specifies the reduction to apply to the output:
            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: No reduction will be
            applied to the output. ``'mean'``: The output will be averaged.
            ``'sum'``: The output will be summed. Default: ``'none'``
Yassine Alouini's avatar
Yassine Alouini committed
39
        eps (float): small number to prevent division by zero. Default: 1e-7
Hu Ye's avatar
Hu Ye committed
40
41
42
43
44
45

    Reference:
        Hamid Rezatofighi et. al: Generalized Intersection over Union:
        A Metric and A Loss for Bounding Box Regression:
        https://arxiv.org/abs/1902.09630
    """
46
47
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(generalized_box_iou_loss)
Hu Ye's avatar
Hu Ye committed
48

49
50
    boxes1 = _upcast(boxes1)
    boxes2 = _upcast(boxes2)
Hu Ye's avatar
Hu Ye committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    x1, y1, x2, y2 = boxes1.unbind(dim=-1)
    x1g, y1g, x2g, y2g = boxes2.unbind(dim=-1)

    # Intersection keypoints
    xkis1 = torch.max(x1, x1g)
    ykis1 = torch.max(y1, y1g)
    xkis2 = torch.min(x2, x2g)
    ykis2 = torch.min(y2, y2g)

    intsctk = torch.zeros_like(x1)
    mask = (ykis2 > ykis1) & (xkis2 > xkis1)
    intsctk[mask] = (xkis2[mask] - xkis1[mask]) * (ykis2[mask] - ykis1[mask])
    unionk = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g) - intsctk
    iouk = intsctk / (unionk + eps)

    # smallest enclosing box
    xc1 = torch.min(x1, x1g)
    yc1 = torch.min(y1, y1g)
    xc2 = torch.max(x2, x2g)
    yc2 = torch.max(y2, y2g)

    area_c = (xc2 - xc1) * (yc2 - yc1)
    miouk = iouk - ((area_c - unionk) / (area_c + eps))

    loss = 1 - miouk

    if reduction == "mean":
        loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum()
    elif reduction == "sum":
        loss = loss.sum()

    return loss