densenet.cpp 6.43 KB
Newer Older
Shahriar's avatar
Shahriar committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#include "densenet.h"

#include "modelsimpl.h"

namespace vision {
namespace models {
using Options = torch::nn::Conv2dOptions;

struct _DenseLayerImpl : torch::nn::SequentialImpl {
  double drop_rate;

  _DenseLayerImpl(
      int64_t num_input_features,
      int64_t growth_rate,
      int64_t bn_size,
      double drop_rate)
      : drop_rate(drop_rate) {
    push_back("norm1", torch::nn::BatchNorm(num_input_features));
    push_back("relu1", torch::nn::Functional(modelsimpl::relu_));
    push_back(
        "conv1",
        torch::nn::Conv2d(Options(num_input_features, bn_size * growth_rate, 1)
                              .stride(1)
                              .with_bias(false)));
    push_back("norm2", torch::nn::BatchNorm(bn_size * growth_rate));
    push_back("relu2", torch::nn::Functional(modelsimpl::relu_));
    push_back(
        "conv2",
        torch::nn::Conv2d(Options(bn_size * growth_rate, growth_rate, 3)
                              .stride(1)
                              .padding(1)
                              .with_bias(false)));
  }

  torch::Tensor forward(torch::Tensor x) {
    auto new_features = torch::nn::SequentialImpl::forward(x);
    if (drop_rate > 0)
      new_features =
          torch::dropout(new_features, drop_rate, this->is_training());
    return torch::cat({x, new_features}, 1);
  }
};

TORCH_MODULE(_DenseLayer);

struct _DenseBlockImpl : torch::nn::SequentialImpl {
  _DenseBlockImpl(
      int64_t num_layers,
      int64_t num_input_features,
      int64_t bn_size,
      int64_t growth_rate,
      double drop_rate) {
    for (int64_t i = 0; i < num_layers; ++i) {
      auto layer = _DenseLayer(
          num_input_features + i * growth_rate,
          growth_rate,
          bn_size,
          drop_rate);
      push_back("denselayer" + std::to_string(i + 1), layer);
    }
  }

  torch::Tensor forward(torch::Tensor x) {
    return torch::nn::SequentialImpl::forward(x);
  }
};

TORCH_MODULE(_DenseBlock);

struct _TransitionImpl : torch::nn::SequentialImpl {
  _TransitionImpl(int64_t num_input_features, int64_t num_output_features) {
    push_back("norm", torch::nn::BatchNorm(num_input_features));
    push_back("relu ", torch::nn::Functional(modelsimpl::relu_));
    push_back(
        "conv",
        torch::nn::Conv2d(Options(num_input_features, num_output_features, 1)
                              .stride(1)
                              .with_bias(false)));
    push_back(
80
        "pool", torch::nn::Functional([](torch::Tensor input) { return torch::avg_pool2d(input, 2, 2, 0, false, true); }));
Shahriar's avatar
Shahriar committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
  }

  torch::Tensor forward(torch::Tensor x) {
    return torch::nn::SequentialImpl::forward(x);
  }
};

TORCH_MODULE(_Transition);

DenseNetImpl::DenseNetImpl(
    int64_t num_classes,
    int64_t growth_rate,
    std::vector<int64_t> block_config,
    int64_t num_init_features,
    int64_t bn_size,
    double drop_rate) {
  // First convolution
  features = torch::nn::Sequential();
  features->push_back(
      "conv0",
      torch::nn::Conv2d(Options(3, num_init_features, 7)
                            .stride(2)
                            .padding(3)
                            .with_bias(false)));

  features->push_back("norm0", torch::nn::BatchNorm(num_init_features));
  features->push_back("relu0", torch::nn::Functional(modelsimpl::relu_));
  features->push_back(
      "pool0", torch::nn::Functional(torch::max_pool2d, 3, 2, 1, 1, false));

  // Each denseblock
  auto num_features = num_init_features;
  for (size_t i = 0; i < block_config.size(); ++i) {
    auto num_layers = block_config[i];
    _DenseBlock block(
        num_layers, num_features, bn_size, growth_rate, drop_rate);

    features->push_back("denseblock" + std::to_string(i + 1), block);
    num_features = num_features + num_layers * growth_rate;

    if (i != block_config.size() - 1) {
      auto trans = _Transition(num_features, num_features / 2);
      features->push_back("transition" + std::to_string(i + 1), trans);
      num_features = num_features / 2;
    }
  }

  // Final batch norm
  features->push_back("norm5", torch::nn::BatchNorm(num_features));
  // Linear layer
  classifier = torch::nn::Linear(num_features, num_classes);

  register_module("features", features);
  register_module("classifier", classifier);

  // Official init from torch repo.
  for (auto& module : modules(/*include_self=*/false)) {
    if (auto M = dynamic_cast<torch::nn::Conv2dImpl*>(module.get()))
      torch::nn::init::kaiming_normal_(M->weight);
    else if (auto M = dynamic_cast<torch::nn::BatchNormImpl*>(module.get())) {
      torch::nn::init::constant_(M->weight, 1);
      torch::nn::init::constant_(M->bias, 0);
    } else if (auto M = dynamic_cast<torch::nn::LinearImpl*>(module.get()))
      torch::nn::init::constant_(M->bias, 0);
  }
}

torch::Tensor DenseNetImpl::forward(torch::Tensor x) {
  auto features = this->features->forward(x);
  auto out = torch::relu_(features);
  out = torch::adaptive_avg_pool2d(out, {1, 1});

  out = out.view({features.size(0), -1});
  out = this->classifier->forward(out);
  return out;
}

DenseNet121Impl::DenseNet121Impl(
    int64_t num_classes,
    int64_t growth_rate,
    std::vector<int64_t> block_config,
    int64_t num_init_features,
    int64_t bn_size,
    double drop_rate)
    : DenseNetImpl(
          num_classes,
          growth_rate,
          block_config,
          num_init_features,
          bn_size,
          drop_rate) {}

DenseNet169Impl::DenseNet169Impl(
    int64_t num_classes,
    int64_t growth_rate,
    std::vector<int64_t> block_config,
    int64_t num_init_features,
    int64_t bn_size,
    double drop_rate)
    : DenseNetImpl(
          num_classes,
          growth_rate,
          block_config,
          num_init_features,
          bn_size,
          drop_rate) {}

DenseNet201Impl::DenseNet201Impl(
    int64_t num_classes,
    int64_t growth_rate,
    std::vector<int64_t> block_config,
    int64_t num_init_features,
    int64_t bn_size,
    double drop_rate)
    : DenseNetImpl(
          num_classes,
          growth_rate,
          block_config,
          num_init_features,
          bn_size,
          drop_rate) {}

DenseNet161Impl::DenseNet161Impl(
    int64_t num_classes,
    int64_t growth_rate,
    std::vector<int64_t> block_config,
    int64_t num_init_features,
    int64_t bn_size,
    double drop_rate)
    : DenseNetImpl(
          num_classes,
          growth_rate,
          block_config,
          num_init_features,
          bn_size,
          drop_rate) {}

} // namespace models
} // namespace vision