ROIAlign_cuda.cu 12.4 KB
Newer Older
1
2
3
4
#include <ATen/ATen.h>
#include <ATen/TensorUtils.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
5
#include <THC/THCAtomics.cuh>
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

#include "cuda_helpers.h"

template <typename T>
__device__ T bilinear_interpolate(
    const T* input,
    const int height,
    const int width,
    T y,
    T x,
    const int index /* index for debug only*/) {
  // deal with cases that inverse elements are out of feature map boundary
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    // empty
    return 0;
  }

  if (y <= 0)
    y = 0;
  if (x <= 0)
    x = 0;

  int y_low = (int)y;
  int x_low = (int)x;
  int y_high;
  int x_high;

  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = (T)y_low;
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = (T)x_low;
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low;
  T lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;

  // do bilinear interpolation
  T v1 = input[y_low * width + x_low];
  T v2 = input[y_low * width + x_high];
  T v3 = input[y_high * width + x_low];
  T v4 = input[y_high * width + x_high];
  T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

  T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);

  return val;
}

template <typename T>
__global__ void RoIAlignForward(
    const int nthreads,
    const T* input,
    const T spatial_scale,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    const int sampling_ratio,
AhnDW's avatar
AhnDW committed
74
    const bool aligned,
75
76
77
78
79
80
81
82
83
84
85
86
87
    const T* rois,
    T* output) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;

    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];

    // Do not using rounding; this implementation detail is critical
AhnDW's avatar
AhnDW committed
88
89
90
91
92
    T offset = aligned ? (T)0.5 : (T)0.0;
    T roi_start_w = offset_rois[1] * spatial_scale - offset;
    T roi_start_h = offset_rois[2] * spatial_scale - offset;
    T roi_end_w = offset_rois[3] * spatial_scale - offset;
    T roi_end_h = offset_rois[4] * spatial_scale - offset;
93
94
95
96

    // Force malformed ROIs to be 1x1
    T roi_width = max(roi_end_w - roi_start_w, (T)1.);
    T roi_height = max(roi_end_h - roi_start_h, (T)1.);
AhnDW's avatar
AhnDW committed
97

98
99
100
101
102
103
104
105
106
107
108
109
110
111
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    const T* offset_input =
        input + (roi_batch_ind * channels + c) * height * width;

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : ceil(roi_height / pooled_height); // e.g., = 2
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    // We do average (integral) pooling inside a bin
AhnDW's avatar
AhnDW committed
112
113
    // When the grid is empty, output zeros.
    const T count = max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

    T output_val = 0.;
    for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1
    {
      const T y = roi_start_h + ph * bin_size_h +
          static_cast<T>(iy + .5f) * bin_size_h /
              static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = roi_start_w + pw * bin_size_w +
            static_cast<T>(ix + .5f) * bin_size_w /
                static_cast<T>(roi_bin_grid_w);

        T val = bilinear_interpolate(offset_input, height, width, y, x, index);
        output_val += val;
      }
    }
    output_val /= count;

    output[index] = output_val;
  }
}

template <typename T>
__device__ void bilinear_interpolate_gradient(
    const int height,
    const int width,
    T y,
    T x,
    T& w1,
    T& w2,
    T& w3,
    T& w4,
    int& x_low,
    int& x_high,
    int& y_low,
    int& y_high,
    const int index /* index for debug only*/) {
  // deal with cases that inverse elements are out of feature map boundary
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    // empty
    w1 = w2 = w3 = w4 = 0.;
    x_low = x_high = y_low = y_high = -1;
    return;
  }

  if (y <= 0)
    y = 0;
  if (x <= 0)
    x = 0;

  y_low = (int)y;
  x_low = (int)x;

  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = (T)y_low;
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = (T)x_low;
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low;
  T lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;

  // reference in forward
  // T v1 = input[y_low * width + x_low];
  // T v2 = input[y_low * width + x_high];
  // T v3 = input[y_high * width + x_low];
  // T v4 = input[y_high * width + x_high];
  // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);

  w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

  return;
}

template <typename T>
__global__ void RoIAlignBackward(
    const int nthreads,
    const T* grad_output,
    const T spatial_scale,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    const int sampling_ratio,
AhnDW's avatar
AhnDW committed
208
    const bool aligned,
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
    T* grad_input,
    const T* rois,
    const int n_stride,
    const int c_stride,
    const int h_stride,
    const int w_stride) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;

    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];

    // Do not using rounding; this implementation detail is critical
AhnDW's avatar
AhnDW committed
226
227
228
229
230
    T offset = aligned ? (T)0.5 : (T)0.0;
    T roi_start_w = offset_rois[1] * spatial_scale - offset;
    T roi_start_h = offset_rois[2] * spatial_scale - offset;
    T roi_end_w = offset_rois[3] * spatial_scale - offset;
    T roi_end_h = offset_rois[4] * spatial_scale - offset;
231
232
233
234

    // Force malformed ROIs to be 1x1
    T roi_width = max(roi_end_w - roi_start_w, (T)1.);
    T roi_height = max(roi_end_h - roi_start_h, (T)1.);
AhnDW's avatar
AhnDW committed
235

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    T* offset_grad_input =
        grad_input + ((roi_batch_ind * channels + c) * height * width);

    // We need to index the gradient using the tensor strides to access the
    // correct values.
    int output_offset = n * n_stride + c * c_stride;
    const T* offset_grad_output = grad_output + output_offset;
    const T grad_output_this_bin =
        offset_grad_output[ph * h_stride + pw * w_stride];

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : ceil(roi_height / pooled_height); // e.g., = 2
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    // We do average (integral) pooling inside a bin
    const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4

    for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1
    {
      const T y = roi_start_h + ph * bin_size_h +
          static_cast<T>(iy + .5f) * bin_size_h /
              static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = roi_start_w + pw * bin_size_w +
            static_cast<T>(ix + .5f) * bin_size_w /
                static_cast<T>(roi_bin_grid_w);

        T w1, w2, w3, w4;
        int x_low, x_high, y_low, y_high;

        bilinear_interpolate_gradient(
            height,
            width,
            y,
            x,
            w1,
            w2,
            w3,
            w4,
            x_low,
            x_high,
            y_low,
            y_high,
            index);

        T g1 = grad_output_this_bin * w1 / count;
        T g2 = grad_output_this_bin * w2 / count;
        T g3 = grad_output_this_bin * w3 / count;
        T g4 = grad_output_this_bin * w4 / count;

        if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
          atomicAdd(
              offset_grad_input + y_low * width + x_low, static_cast<T>(g1));
          atomicAdd(
              offset_grad_input + y_low * width + x_high, static_cast<T>(g2));
          atomicAdd(
              offset_grad_input + y_high * width + x_low, static_cast<T>(g3));
          atomicAdd(
              offset_grad_input + y_high * width + x_high, static_cast<T>(g4));
        } // if
      } // ix
    } // iy
  } // CUDA_1D_KERNEL_LOOP
} // RoIAlignBackward

at::Tensor ROIAlign_forward_cuda(
    const at::Tensor& input,
    const at::Tensor& rois,
310
311
312
313
    const double spatial_scale,
    const int64_t pooled_height,
    const int64_t pooled_width,
    const int64_t sampling_ratio,
AhnDW's avatar
AhnDW committed
314
    const bool aligned) {
315
316
  AT_ASSERTM(input.is_cuda(), "input must be a CUDA tensor");
  AT_ASSERTM(rois.is_cuda(), "rois must be a CUDA tensor");
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

  at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};

  at::CheckedFrom c = "ROIAlign_forward_cuda";
  at::checkAllSameGPU(c, {input_t, rois_t});
  at::checkAllSameType(c, {input_t, rois_t});

  at::cuda::CUDAGuard device_guard(input.device());

  auto num_rois = rois.size(0);
  auto channels = input.size(1);
  auto height = input.size(2);
  auto width = input.size(3);

  at::Tensor output = at::zeros(
      {num_rois, channels, pooled_height, pooled_width}, input.options());

  auto output_size = num_rois * pooled_height * pooled_width * channels;
  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

Francisco Massa's avatar
Francisco Massa committed
337
  dim3 grid(std::min(
338
    ceil_div(static_cast<int64_t>(output_size), static_cast<int64_t>(512)),
Francisco Massa's avatar
Francisco Massa committed
339
      static_cast<int64_t>(4096)));
340
341
342
343
344
345
346
  dim3 block(512);

  if (output.numel() == 0) {
    AT_CUDA_CHECK(cudaGetLastError());
    return output;
  }

347
348
  auto input_ = input.contiguous(),
       rois_ = rois.contiguous();
349
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.scalar_type(), "ROIAlign_forward", [&] {
350
351
    RoIAlignForward<scalar_t><<<grid, block, 0, stream>>>(
        output_size,
352
        input_.data_ptr<scalar_t>(),
353
354
355
356
357
358
359
        spatial_scale,
        channels,
        height,
        width,
        pooled_height,
        pooled_width,
        sampling_ratio,
AhnDW's avatar
AhnDW committed
360
        aligned,
361
        rois_.data_ptr<scalar_t>(),
362
        output.data_ptr<scalar_t>());
363
364
365
366
367
368
369
370
  });
  AT_CUDA_CHECK(cudaGetLastError());
  return output;
}

at::Tensor ROIAlign_backward_cuda(
    const at::Tensor& grad,
    const at::Tensor& rois,
371
372
373
374
375
376
377
378
    const double spatial_scale,
    const int64_t pooled_height,
    const int64_t pooled_width,
    const int64_t batch_size,
    const int64_t channels,
    const int64_t height,
    const int64_t width,
    const int64_t sampling_ratio,
AhnDW's avatar
AhnDW committed
379
    const bool aligned) {
380
381
  AT_ASSERTM(grad.is_cuda(), "grad must be a CUDA tensor");
  AT_ASSERTM(rois.is_cuda(), "rois must be a CUDA tensor");
382
383
384
385
386
387
388
389
390
391
392
393
394
395

  at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2};

  at::CheckedFrom c = "ROIAlign_backward_cuda";
  at::checkAllSameGPU(c, {grad_t, rois_t});
  at::checkAllSameType(c, {grad_t, rois_t});

  at::cuda::CUDAGuard device_guard(grad.device());

  at::Tensor grad_input =
      at::zeros({batch_size, channels, height, width}, grad.options());

  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

Francisco Massa's avatar
Francisco Massa committed
396
  dim3 grid(std::min(
397
    ceil_div(static_cast<int64_t>(grad.numel()), static_cast<int64_t>(512)),
Francisco Massa's avatar
Francisco Massa committed
398
      static_cast<int64_t>(4096)));
399
400
401
402
403
404
405
406
407
408
409
410
411
  dim3 block(512);

  // handle possibly empty gradients
  if (grad.numel() == 0) {
    AT_CUDA_CHECK(cudaGetLastError());
    return grad_input;
  }

  int n_stride = grad.stride(0);
  int c_stride = grad.stride(1);
  int h_stride = grad.stride(2);
  int w_stride = grad.stride(3);

412
  auto rois_ = rois.contiguous();
413
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(grad.scalar_type(), "ROIAlign_backward", [&] {
414
415
    RoIAlignBackward<scalar_t><<<grid, block, 0, stream>>>(
        grad.numel(),
416
        grad.data_ptr<scalar_t>(),
417
418
419
420
421
422
423
        spatial_scale,
        channels,
        height,
        width,
        pooled_height,
        pooled_width,
        sampling_ratio,
AhnDW's avatar
AhnDW committed
424
        aligned,
425
        grad_input.data_ptr<scalar_t>(),
426
        rois_.data_ptr<scalar_t>(),
427
428
429
430
431
432
433
434
        n_stride,
        c_stride,
        h_stride,
        w_stride);
  });
  AT_CUDA_CHECK(cudaGetLastError());
  return grad_input;
}