DeformConv.h 5.27 KB
Newer Older
1
2
3
4
5
6
7
#pragma once

#include "cpu/vision_cpu.h"

#ifdef WITH_CUDA
#include "cuda/vision_cuda.h"
#endif
8
9
10
#ifdef WITH_HIP
#include "hip/vision_cuda.h"
#endif
11
12
13
14
15
16
17
18
19
20
21
22

at::Tensor DeformConv2d_forward(
    const at::Tensor& input,
    const at::Tensor& weight,
    const at::Tensor& offset,
    const at::Tensor& bias,
    const std::pair<int, int>& stride,
    const std::pair<int, int>& padding,
    const std::pair<int, int>& dilation,
    const int groups,
    const int offset_groups) {
  if (input.type().is_cuda()) {
23
#if defined(WITH_CUDA) || defined(WITH_HIP)
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
    return DeformConv2d_forward_cuda(
        input.contiguous(),
        weight.contiguous(),
        offset.contiguous(),
        bias.contiguous(),
        stride,
        padding,
        dilation,
        groups,
        offset_groups);
#else
    AT_ERROR("Not compiled with GPU support");
#endif
  }
  return DeformConv2d_forward_cpu(
      input.contiguous(),
      weight.contiguous(),
      offset.contiguous(),
      bias.contiguous(),
      stride,
      padding,
      dilation,
      groups,
      offset_groups);
}

std::tuple<at::Tensor, at::Tensor, at::Tensor, at::Tensor> DeformConv2d_backward(
    const at::Tensor& grad,
    const at::Tensor& input,
    const at::Tensor& weight,
    const at::Tensor& offset,
    const at::Tensor& bias,
    const std::pair<int, int>& stride,
    const std::pair<int, int>& padding,
    const std::pair<int, int>& dilation,
    const int groups,
    const int offset_groups) {
  if (grad.type().is_cuda()) {
62
#if defined(WITH_CUDA) || defined(WITH_HIP)
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    return DeformConv2d_backward_cuda(
        grad.contiguous(),
        input.contiguous(),
        weight.contiguous(),
        offset.contiguous(),
        bias.contiguous(),
        stride,
        padding,
        dilation,
        groups,
        offset_groups);
#else
    AT_ERROR("Not compiled with GPU support");
#endif
  }
  return DeformConv2d_backward_cpu(
      grad.contiguous(),
      input.contiguous(),
      weight.contiguous(),
      offset.contiguous(),
      bias.contiguous(),
      stride,
      padding,
      dilation,
      groups,
      offset_groups);
}

using namespace at;
using torch::Tensor;
using torch::autograd::AutogradContext;
using torch::autograd::Variable;
using torch::autograd::variable_list;

class DeformConv2dFunction
    : public torch::autograd::Function<DeformConv2dFunction> {
 public:
  static variable_list forward(
      AutogradContext* ctx,
      Variable input,
      Variable weight,
      Variable offset,
      Variable bias,
      int64_t stride_h,
      int64_t stride_w,
      int64_t pad_h,
      int64_t pad_w,
      int64_t dilation_h,
      int64_t dilation_w,
      int64_t groups,
      int64_t offset_groups) {
    auto output = DeformConv2d_forward(
        input,
        weight,
        offset,
        bias,
        {stride_h, stride_w},
        {pad_h, pad_w},
        {dilation_h, dilation_w},
        groups,
        offset_groups);

    ctx->save_for_backward({input, weight, offset, bias});
    ctx->saved_data["stride_h"] = stride_h;
    ctx->saved_data["stride_w"] = stride_w;
    ctx->saved_data["pad_h"] = pad_h;
    ctx->saved_data["pad_w"] = pad_w;
    ctx->saved_data["dilation_h"] = dilation_h;
    ctx->saved_data["dilation_w"] = dilation_w;
    ctx->saved_data["groups"] = groups;
    ctx->saved_data["offset_groups"] = offset_groups;

    return {
        output,
    };
  }

  static variable_list backward(
      AutogradContext* ctx,
      variable_list grad_output) {
    auto saved = ctx->get_saved_variables();
    auto input = saved[0];
    auto weight = saved[1];
    auto offset = saved[2];
    auto bias = saved[3];

    auto stride_h = ctx->saved_data["stride_h"].toInt();
    auto stride_w = ctx->saved_data["stride_w"].toInt();
    auto pad_h = ctx->saved_data["pad_h"].toInt();
    auto pad_w = ctx->saved_data["pad_w"].toInt();
    auto dilation_h = ctx->saved_data["dilation_h"].toInt();
    auto dilation_w = ctx->saved_data["dilation_w"].toInt();
    auto groups = ctx->saved_data["groups"].toInt();
    auto offset_groups = ctx->saved_data["offset_groups"].toInt();

    auto grads = DeformConv2d_backward(
        grad_output[0],
        input,
        weight,
        offset,
        bias,
        {stride_h, stride_w},
        {pad_h, pad_w},
        {dilation_h, dilation_w},
        groups,
        offset_groups);
    auto grad_input = std::get<0>(grads);
    auto grad_weight = std::get<1>(grads);
    auto grad_offset = std::get<2>(grads);
    auto grad_bias = std::get<3>(grads);

    return {
        grad_input,
        grad_weight,
        grad_offset,
        grad_bias,
        Variable(),
        Variable(),
        Variable(),
        Variable(),
        Variable(),
        Variable(),
        Variable(),
        Variable(),
    };
  }
};

at::Tensor deform_conv2d(
    const at::Tensor& input,
    const at::Tensor& weight,
    const at::Tensor& offset,
    const at::Tensor& bias,
    int64_t stride_h,
    int64_t stride_w,
    int64_t pad_h,
    int64_t pad_w,
    int64_t dilation_h,
    int64_t dilation_w,
    int64_t groups,
    int64_t offset_groups) {
  auto result = DeformConv2dFunction::apply(
      input,
      weight,
      offset,
      bias,
      stride_h,
      stride_w,
      pad_h,
      pad_w,
      dilation_h,
      dilation_w,
      groups,
      offset_groups);
  return result[0];
}