"vscode:/vscode.git/clone" did not exist on "8df1b6b8932180ff853c819aee0d08c4bb61ad27"
_utils.py 5.83 KB
Newer Older
1
import collections.abc
vfdev's avatar
vfdev committed
2
import numbers
3
from contextlib import suppress
4
from typing import Any, Callable, Dict, Literal, Optional, Sequence, Type, Union
5
6

import torch
7

8
from torchvision import datapoints
Philip Meier's avatar
Philip Meier committed
9
from torchvision.datapoints._datapoint import _FillType, _FillTypeJIT
10
from torchvision.transforms.transforms import _check_sequence_input, _setup_angle, _setup_size  # noqa: F401
11

vfdev's avatar
vfdev committed
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
def _setup_float_or_seq(arg: Union[float, Sequence[float]], name: str, req_size: int = 2) -> Sequence[float]:
    if not isinstance(arg, (float, Sequence)):
        raise TypeError(f"{name} should be float or a sequence of floats. Got {type(arg)}")
    if isinstance(arg, Sequence) and len(arg) != req_size:
        raise ValueError(f"If {name} is a sequence its length should be one of {req_size}. Got {len(arg)}")
    if isinstance(arg, Sequence):
        for element in arg:
            if not isinstance(element, float):
                raise ValueError(f"{name} should be a sequence of floats. Got {type(element)}")

    if isinstance(arg, float):
        arg = [float(arg), float(arg)]
    if isinstance(arg, (list, tuple)) and len(arg) == 1:
        arg = [arg[0], arg[0]]
    return arg


30
def _check_fill_arg(fill: Union[_FillType, Dict[Union[Type, str], _FillType]]) -> None:
vfdev's avatar
vfdev committed
31
    if isinstance(fill, dict):
32
        for value in fill.values():
vfdev's avatar
vfdev committed
33
34
35
            _check_fill_arg(value)
    else:
        if fill is not None and not isinstance(fill, (numbers.Number, tuple, list)):
36
            raise TypeError("Got inappropriate fill arg, only Numbers, tuples, lists and dicts are allowed.")
vfdev's avatar
vfdev committed
37
38


Philip Meier's avatar
Philip Meier committed
39
def _convert_fill_arg(fill: datapoints._FillType) -> datapoints._FillTypeJIT:
40
41
42
43
44
45
46
47
48
    # Fill = 0 is not equivalent to None, https://github.com/pytorch/vision/issues/6517
    # So, we can't reassign fill to 0
    # if fill is None:
    #     fill = 0
    if fill is None:
        return fill

    if not isinstance(fill, (int, float)):
        fill = [float(v) for v in list(fill)]
49
    return fill  # type: ignore[return-value]
50
51


52
def _setup_fill_arg(fill: Union[_FillType, Dict[Union[Type, str], _FillType]]) -> Dict[Union[Type, str], _FillTypeJIT]:
vfdev's avatar
vfdev committed
53
54
55
    _check_fill_arg(fill)

    if isinstance(fill, dict):
56
57
58
        for k, v in fill.items():
            fill[k] = _convert_fill_arg(v)
        return fill  # type: ignore[return-value]
59
60
    else:
        return {"others": _convert_fill_arg(fill)}
vfdev's avatar
vfdev committed
61

62
63
64
65
66
67
68
69

def _get_fill(fill_dict, inpt_type):
    if inpt_type in fill_dict:
        return fill_dict[inpt_type]
    elif "others" in fill_dict:
        return fill_dict["others"]
    else:
        RuntimeError("This should never happen, please open an issue on the torchvision repo if you hit this.")
vfdev's avatar
vfdev committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84


def _check_padding_arg(padding: Union[int, Sequence[int]]) -> None:
    if not isinstance(padding, (numbers.Number, tuple, list)):
        raise TypeError("Got inappropriate padding arg")

    if isinstance(padding, (tuple, list)) and len(padding) not in [1, 2, 4]:
        raise ValueError(f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple")


# TODO: let's use torchvision._utils.StrEnum to have the best of both worlds (strings and enums)
# https://github.com/pytorch/vision/issues/6250
def _check_padding_mode_arg(padding_mode: Literal["constant", "edge", "reflect", "symmetric"]) -> None:
    if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
        raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")
85
86
87
88
89
90
91


def _find_labels_default_heuristic(inputs: Any) -> torch.Tensor:
    """
    This heuristic covers three cases:

    1. The input is tuple or list whose second item is a labels tensor. This happens for already batched
Nicolas Hug's avatar
Nicolas Hug committed
92
       classification inputs for MixUp and CutMix (typically after the Dataloder).
93
94
95
96
97
98
99
100
101
102
103
104
105
    2. The input is a tuple or list whose second item is a dictionary that contains the labels tensor
       under a label-like (see below) key. This happens for the inputs of detection models.
    3. The input is a dictionary that is structured as the one from 2.

    What is "label-like" key? We first search for an case-insensitive match of 'labels' inside the keys of the
    dictionary. This is the name our detection models expect. If we can't find that, we look for a case-insensitive
    match of the term 'label' anywhere inside the key, i.e. 'FooLaBeLBar'. If we can't find that either, the dictionary
    contains no "label-like" key.
    """

    if isinstance(inputs, (tuple, list)):
        inputs = inputs[1]

Nicolas Hug's avatar
Nicolas Hug committed
106
    # MixUp, CutMix
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    if isinstance(inputs, torch.Tensor):
        return inputs

    if not isinstance(inputs, collections.abc.Mapping):
        raise ValueError(
            f"When using the default labels_getter, the input passed to forward must be a dictionary or a two-tuple "
            f"whose second item is a dictionary or a tensor, but got {inputs} instead."
        )

    candidate_key = None
    with suppress(StopIteration):
        candidate_key = next(key for key in inputs.keys() if key.lower() == "labels")
    if candidate_key is None:
        with suppress(StopIteration):
            candidate_key = next(key for key in inputs.keys() if "label" in key.lower())
    if candidate_key is None:
        raise ValueError(
            "Could not infer where the labels are in the sample. Try passing a callable as the labels_getter parameter?"
            "If there are no labels in the sample by design, pass labels_getter=None."
        )

    return inputs[candidate_key]


def _parse_labels_getter(
    labels_getter: Union[str, Callable[[Any], Optional[torch.Tensor]], None]
) -> Callable[[Any], Optional[torch.Tensor]]:
    if labels_getter == "default":
        return _find_labels_default_heuristic
    elif callable(labels_getter):
        return labels_getter
    elif labels_getter is None:
        return lambda _: None
    else:
        raise ValueError(f"labels_getter should either be 'default', a callable, or None, but got {labels_getter}.")