"docs/en/vscode:/vscode.git/clone" did not exist on "c20b6cb637fa31b88b1c7b523116f4f606010094"
builtin_dataset_mocks.py 43.9 KB
Newer Older
1
import collections.abc
2
import contextlib
3
import csv
4
5
import functools
import gzip
6
import itertools
Philip Meier's avatar
Philip Meier committed
7
import json
8
9
10
import lzma
import pathlib
import pickle
11
import random
12
import tempfile
13
14
import xml.etree.ElementTree as ET
from collections import defaultdict, Counter, UserDict
15
16

import numpy as np
Philip Meier's avatar
Philip Meier committed
17
import PIL.Image
18
19
import pytest
import torch
20
21
from datasets_utils import make_zip, make_tar, create_image_folder, create_image_file
from torch.nn.functional import one_hot
22
23
from torch.testing import make_tensor as _make_tensor
from torchvision.prototype import datasets
24
from torchvision.prototype.datasets._api import DEFAULT_DECODER_MAP, DEFAULT_DECODER, find
Philip Meier's avatar
Philip Meier committed
25

26
make_tensor = functools.partial(_make_tensor, device="cpu")
Philip Meier's avatar
Philip Meier committed
27
make_scalar = functools.partial(make_tensor, ())
28

29
30
TEST_HOME = pathlib.Path(tempfile.mkdtemp())

31

32
__all__ = ["DATASET_MOCKS", "parametrize_dataset_mocks"]
33
34


35
class ResourceMock(datasets.utils.OnlineResource):
36
37
38
39
40
41
42
43
44
45
46
47
    def __init__(self, *, dataset_name, dataset_config, **kwargs):
        super().__init__(**kwargs)
        self.dataset_name = dataset_name
        self.dataset_config = dataset_config

    def _download(self, _):
        raise pytest.UsageError(
            f"Dataset '{self.dataset_name}' requires the file '{self.file_name}' for {self.dataset_config}, "
            f"but this file does not exist."
        )


48
49
50
51
52
53
class DatasetMock:
    def __init__(self, name, mock_data_fn, *, configs=None):
        self.dataset = find(name)
        self.root = TEST_HOME / self.dataset.name
        self.mock_data_fn = self._parse_mock_data(mock_data_fn)
        self.configs = configs or self.info._configs
54
55
        self._cache = {}

56
57
58
    @property
    def info(self):
        return self.dataset.info
59

60
61
62
    @property
    def name(self):
        return self.info.name
63

64
65
66
    def _parse_mock_data(self, mock_data_fn):
        def wrapper(info, root, config):
            mock_infos = mock_data_fn(info, root, config)
67

68
69
70
71
72
            if mock_infos is None:
                raise pytest.UsageError(
                    f"The mock data function for dataset '{self.name}' returned nothing. It needs to at least return an "
                    f"integer indicating the number of samples for the current `config`."
                )
73

74
75
76
77
78
79
80
81
            key_types = set(type(key) for key in mock_infos) if isinstance(mock_infos, dict) else {}
            if datasets.utils.DatasetConfig not in key_types:
                mock_infos = {config: mock_infos}
            elif len(key_types) > 1:
                raise pytest.UsageError(
                    f"Unable to handle the returned dictionary of the mock data function for dataset {self.name}. If "
                    f"returned dictionary uses `DatasetConfig` as key type, all keys should be of that type."
                )
82

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
            for config_, mock_info in list(mock_infos.items()):
                if config_ in self._cache:
                    raise pytest.UsageError(
                        f"The mock info for config {config_} of dataset {self.name} generated for config {config} "
                        f"already exists in the cache."
                    )
                if isinstance(mock_info, int):
                    mock_infos[config_] = dict(num_samples=mock_info)
                elif not isinstance(mock_info, dict):
                    raise pytest.UsageError(
                        f"The mock data function for dataset '{self.name}' returned a {type(mock_infos)} for `config` "
                        f"{config_}. The returned object should be a dictionary containing at least the number of "
                        f"samples for the key `'num_samples'`. If no additional information is required for specific "
                        f"tests, the number of samples can also be returned as an integer."
                    )
                elif "num_samples" not in mock_info:
                    raise pytest.UsageError(
                        f"The dictionary returned by the mock data function for dataset '{self.name}' and config "
                        f"{config_} has to contain a `'num_samples'` entry indicating the number of samples."
                    )

            return mock_infos

        return wrapper

    def _load_mock(self, config):
        with contextlib.suppress(KeyError):
            return self._cache[config]

        self.root.mkdir(exist_ok=True)
        for config_, mock_info in self.mock_data_fn(self.info, self.root, config).items():
            mock_resources = [
                ResourceMock(dataset_name=self.name, dataset_config=config_, file_name=resource.file_name)
                for resource in self.dataset.resources(config_)
            ]
            self._cache[config_] = (mock_resources, mock_info)

        return self._cache[config]

    def load(self, config, *, decoder=DEFAULT_DECODER):
        try:
            self.info.check_dependencies()
        except ModuleNotFoundError as error:
            pytest.skip(str(error))
127

128
129
130
        mock_resources, mock_info = self._load_mock(config)
        datapipe = self.dataset._make_datapipe(
            [resource.load(self.root) for resource in mock_resources],
131
            config=config,
132
            decoder=DEFAULT_DECODER_MAP.get(self.info.type) if decoder is DEFAULT_DECODER else decoder,
133
134
135
136
        )
        return datapipe, mock_info


137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
def config_id(name, config):
    parts = [name]
    for name, value in config.items():
        if isinstance(value, bool):
            part = ("" if value else "no_") + name
        else:
            part = str(value)
        parts.append(part)
    return "-".join(parts)


def parametrize_dataset_mocks(*dataset_mocks, marks=None):
    mocks = {}
    for mock in dataset_mocks:
        if isinstance(mock, DatasetMock):
            mocks[mock.name] = mock
        elif isinstance(mock, collections.abc.Sequence):
            mocks.update({mock_.name: mock_ for mock_ in mock})
        elif isinstance(mock, collections.abc.Mapping):
            mocks.update(mock)
        else:
            raise pytest.UsageError(
                f"The positional arguments passed to `parametrize_dataset_mocks` can either be a `DatasetMock`, "
                f"a sequence of `DatasetMock`'s, or a mapping of names to `DatasetMock`'s, "
                f"but got {mock} instead."
            )
    dataset_mocks = mocks

    if marks is None:
        marks = {}
    elif not isinstance(marks, collections.abc.Mapping):
        raise pytest.UsageError()

    return pytest.mark.parametrize(
        ("dataset_mock", "config"),
        [
            pytest.param(dataset_mock, config, id=config_id(name, config), marks=marks.get(name, ()))
            for name, dataset_mock in dataset_mocks.items()
            for config in dataset_mock.configs
        ],
    )


class DatasetMocks(UserDict):
    def set_from_named_callable(self, fn):
        name = fn.__name__.replace("_", "-")
        self.data[name] = DatasetMock(name, fn)
184
185
        return fn

186

187
DATASET_MOCKS = DatasetMocks()
188

189
190

class MNISTMockData:
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    _DTYPES_ID = {
        torch.uint8: 8,
        torch.int8: 9,
        torch.int16: 11,
        torch.int32: 12,
        torch.float32: 13,
        torch.float64: 14,
    }

    @classmethod
    def _magic(cls, dtype, ndim):
        return cls._DTYPES_ID[dtype] * 256 + ndim + 1

    @staticmethod
    def _encode(t):
        return torch.tensor(t, dtype=torch.int32).numpy().tobytes()[::-1]

    @staticmethod
    def _big_endian_dtype(dtype):
        np_dtype = getattr(np, str(dtype).replace("torch.", ""))().dtype
        return np.dtype(f">{np_dtype.kind}{np_dtype.itemsize}")

    @classmethod
    def _create_binary_file(cls, root, filename, *, num_samples, shape, dtype, compressor, low=0, high):
        with compressor(root / filename, "wb") as fh:
            for meta in (cls._magic(dtype, len(shape)), num_samples, *shape):
                fh.write(cls._encode(meta))

            data = make_tensor((num_samples, *shape), dtype=dtype, low=low, high=high)

            fh.write(data.numpy().astype(cls._big_endian_dtype(dtype)).tobytes())

    @classmethod
    def generate(
        cls,
        root,
        *,
        num_categories,
        num_samples=None,
        images_file,
        labels_file,
        image_size=(28, 28),
        image_dtype=torch.uint8,
        label_size=(),
        label_dtype=torch.uint8,
        compressor=None,
    ):
        if num_samples is None:
            num_samples = num_categories
        if compressor is None:
            compressor = gzip.open

        cls._create_binary_file(
            root,
            images_file,
            num_samples=num_samples,
            shape=image_size,
            dtype=image_dtype,
            compressor=compressor,
            high=float("inf"),
        )
        cls._create_binary_file(
            root,
            labels_file,
            num_samples=num_samples,
            shape=label_size,
            dtype=label_dtype,
            compressor=compressor,
            high=num_categories,
        )

        return num_samples


265
@DATASET_MOCKS.set_from_named_callable
266
267
268
269
def mnist(info, root, config):
    train = config.split == "train"
    images_file = f"{'train' if train else 't10k'}-images-idx3-ubyte.gz"
    labels_file = f"{'train' if train else 't10k'}-labels-idx1-ubyte.gz"
270
    return MNISTMockData.generate(
271
272
273
274
275
276
277
        root,
        num_categories=len(info.categories),
        images_file=images_file,
        labels_file=labels_file,
    )


278
DATASET_MOCKS.update({name: DatasetMock(name, mnist) for name in ["fashionmnist", "kmnist"]})
279
280


281
@DATASET_MOCKS.set_from_named_callable
282
def emnist(info, root, _):
283
284
285
    # The image sets that merge some lower case letters in their respective upper case variant, still use dense
    # labels in the data files. Thus, num_categories != len(categories) there.
    num_categories = defaultdict(
286
        lambda: len(info.categories), {image_set: 47 for image_set in ("Balanced", "By_Merge")}
287
288
    )

289
    mock_infos = {}
290
    file_names = set()
291
292
    for config in info._configs:
        prefix = f"emnist-{config.image_set.replace('_', '').lower()}-{config.split}"
293
294
295
        images_file = f"{prefix}-images-idx3-ubyte.gz"
        labels_file = f"{prefix}-labels-idx1-ubyte.gz"
        file_names.update({images_file, labels_file})
296
297
298
299
300
301
302
        mock_infos[config] = dict(
            num_samples=MNISTMockData.generate(
                root,
                num_categories=num_categories[config.image_set],
                images_file=images_file,
                labels_file=labels_file,
            )
303
304
305
306
        )

    make_zip(root, "emnist-gzip.zip", *file_names)

307
    return mock_infos
308
309


310
@DATASET_MOCKS.set_from_named_callable
311
312
313
314
315
316
317
def qmnist(info, root, config):
    num_categories = len(info.categories)
    if config.split == "train":
        num_samples = num_samples_gen = num_categories + 2
        prefix = "qmnist-train"
        suffix = ".gz"
        compressor = gzip.open
318
        mock_infos = num_samples
319
    elif config.split.startswith("test"):
320
321
322
        # The split 'test50k' is defined as the last 50k images beginning at index 10000. Thus, we need to create
        # more than 10000 images for the dataset to not be empty.
        num_samples_gen = 10001
323
324
325
        prefix = "qmnist-test"
        suffix = ".gz"
        compressor = gzip.open
326
327
328
329
330
        mock_infos = {
            info.make_config(split="test"): num_samples_gen,
            info.make_config(split="test10k"): min(num_samples_gen, 10_000),
            info.make_config(split="test50k"): num_samples_gen - 10_000,
        }
331
332
333
334
335
    else:  # config.split == "nist"
        num_samples = num_samples_gen = num_categories + 3
        prefix = "xnist"
        suffix = ".xz"
        compressor = lzma.open
336
        mock_infos = num_samples
337

338
    MNISTMockData.generate(
339
340
341
342
343
344
345
346
347
        root,
        num_categories=num_categories,
        num_samples=num_samples_gen,
        images_file=f"{prefix}-images-idx3-ubyte{suffix}",
        labels_file=f"{prefix}-labels-idx2-int{suffix}",
        label_size=(8,),
        label_dtype=torch.int32,
        compressor=compressor,
    )
348
    return mock_infos
349
350


351
class CIFARMockData:
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
    NUM_PIXELS = 32 * 32 * 3

    @classmethod
    def _create_batch_file(cls, root, name, *, num_categories, labels_key, num_samples=1):
        content = {
            "data": make_tensor((num_samples, cls.NUM_PIXELS), dtype=torch.uint8).numpy(),
            labels_key: torch.randint(0, num_categories, size=(num_samples,)).tolist(),
        }
        with open(pathlib.Path(root) / name, "wb") as fh:
            pickle.dump(content, fh)

    @classmethod
    def generate(
        cls,
        root,
        name,
        *,
        folder,
        train_files,
        test_files,
        num_categories,
        labels_key,
    ):
        folder = root / folder
        folder.mkdir()
        files = (*train_files, *test_files)
        for file in files:
            cls._create_batch_file(
                folder,
                file,
                num_categories=num_categories,
                labels_key=labels_key,
            )

        make_tar(root, name, folder, compression="gz")


389
@DATASET_MOCKS.set_from_named_callable
390
391
392
393
def cifar10(info, root, config):
    train_files = [f"data_batch_{idx}" for idx in range(1, 6)]
    test_files = ["test_batch"]

394
    CIFARMockData.generate(
395
396
397
398
399
400
401
402
403
404
405
406
        root=root,
        name="cifar-10-python.tar.gz",
        folder=pathlib.Path("cifar-10-batches-py"),
        train_files=train_files,
        test_files=test_files,
        num_categories=10,
        labels_key="labels",
    )

    return len(train_files if config.split == "train" else test_files)


407
@DATASET_MOCKS.set_from_named_callable
408
409
410
411
def cifar100(info, root, config):
    train_files = ["train"]
    test_files = ["test"]

412
    CIFARMockData.generate(
413
414
415
416
417
418
419
420
421
422
423
424
        root=root,
        name="cifar-100-python.tar.gz",
        folder=pathlib.Path("cifar-100-python"),
        train_files=train_files,
        test_files=test_files,
        num_categories=100,
        labels_key="fine_labels",
    )

    return len(train_files if config.split == "train" else test_files)


425
@DATASET_MOCKS.set_from_named_callable
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
def caltech101(info, root, config):
    def create_ann_file(root, name):
        import scipy.io

        box_coord = make_tensor((1, 4), dtype=torch.int32, low=0).numpy().astype(np.uint16)
        obj_contour = make_tensor((2, int(torch.randint(3, 6, size=()))), dtype=torch.float64, low=0).numpy()

        scipy.io.savemat(str(pathlib.Path(root) / name), dict(box_coord=box_coord, obj_contour=obj_contour))

    def create_ann_folder(root, name, file_name_fn, num_examples):
        root = pathlib.Path(root) / name
        root.mkdir(parents=True)

        for idx in range(num_examples):
            create_ann_file(root, file_name_fn(idx))

    images_root = root / "101_ObjectCategories"
    anns_root = root / "Annotations"

    ann_category_map = {
        "Faces_2": "Faces",
        "Faces_3": "Faces_easy",
        "Motorbikes_16": "Motorbikes",
        "Airplanes_Side_2": "airplanes",
    }

    num_images_per_category = 2
    for category in info.categories:
        create_image_folder(
            root=images_root,
            name=category,
            file_name_fn=lambda idx: f"image_{idx + 1:04d}.jpg",
            num_examples=num_images_per_category,
        )
        create_ann_folder(
            root=anns_root,
            name=ann_category_map.get(category, category),
            file_name_fn=lambda idx: f"annotation_{idx + 1:04d}.mat",
            num_examples=num_images_per_category,
        )

    (images_root / "BACKGROUND_Goodle").mkdir()
    make_tar(root, f"{images_root.name}.tar.gz", images_root, compression="gz")

    make_tar(root, f"{anns_root.name}.tar", anns_root)

    return num_images_per_category * len(info.categories)


475
@DATASET_MOCKS.set_from_named_callable
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
def caltech256(info, root, config):
    dir = root / "256_ObjectCategories"
    num_images_per_category = 2

    for idx, category in enumerate(info.categories, 1):
        files = create_image_folder(
            dir,
            name=f"{idx:03d}.{category}",
            file_name_fn=lambda image_idx: f"{idx:03d}_{image_idx + 1:04d}.jpg",
            num_examples=num_images_per_category,
        )
        if category == "spider":
            open(files[0].parent / "RENAME2", "w").close()

    make_tar(root, f"{dir.name}.tar", dir)

    return num_images_per_category * len(info.categories)


495
@DATASET_MOCKS.set_from_named_callable
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
def imagenet(info, root, config):
    wnids = tuple(info.extra.wnid_to_category.keys())
    if config.split == "train":
        images_root = root / "ILSVRC2012_img_train"

        num_samples = len(wnids)

        for wnid in wnids:
            files = create_image_folder(
                root=images_root,
                name=wnid,
                file_name_fn=lambda image_idx: f"{wnid}_{image_idx:04d}.JPEG",
                num_examples=1,
            )
            make_tar(images_root, f"{wnid}.tar", files[0].parent)
511
    elif config.split == "val":
512
513
514
515
516
517
518
519
        num_samples = 3
        files = create_image_folder(
            root=root,
            name="ILSVRC2012_img_val",
            file_name_fn=lambda image_idx: f"ILSVRC2012_val_{image_idx + 1:08d}.JPEG",
            num_examples=num_samples,
        )
        images_root = files[0].parent
520
521
    else:  # config.split == "test"
        images_root = root / "ILSVRC2012_img_test_v10102019"
522

523
        num_samples = 3
524

525
526
527
528
529
530
        create_image_folder(
            root=images_root,
            name="test",
            file_name_fn=lambda image_idx: f"ILSVRC2012_test_{image_idx + 1:08d}.JPEG",
            num_examples=num_samples,
        )
531
    make_tar(root, f"{images_root.name}.tar", images_root)
532
533
534
535
536
537
538
539

    devkit_root = root / "ILSVRC2012_devkit_t12"
    devkit_root.mkdir()
    data_root = devkit_root / "data"
    data_root.mkdir()
    with open(data_root / "ILSVRC2012_validation_ground_truth.txt", "w") as file:
        for label in torch.randint(0, len(wnids), (num_samples,)).tolist():
            file.write(f"{label}\n")
540
541
542
    make_tar(root, f"{devkit_root}.tar.gz", devkit_root, compression="gz")

    return num_samples
Philip Meier's avatar
Philip Meier committed
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649


class CocoMockData:
    @classmethod
    def _make_images_archive(cls, root, name, *, num_samples):
        image_paths = create_image_folder(
            root, name, file_name_fn=lambda idx: f"{idx:012d}.jpg", num_examples=num_samples
        )

        images_meta = []
        for path in image_paths:
            with PIL.Image.open(path) as image:
                width, height = image.size
            images_meta.append(dict(file_name=path.name, id=int(path.stem), width=width, height=height))

        make_zip(root, f"{name}.zip")

        return images_meta

    @classmethod
    def _make_annotations_json(
        cls,
        root,
        name,
        *,
        images_meta,
        fn,
    ):
        num_anns_per_image = torch.randint(1, 5, (len(images_meta),))
        num_anns_total = int(num_anns_per_image.sum())
        ann_ids_iter = iter(torch.arange(num_anns_total)[torch.randperm(num_anns_total)])

        anns_meta = []
        for image_meta, num_anns in zip(images_meta, num_anns_per_image):
            for _ in range(num_anns):
                ann_id = int(next(ann_ids_iter))
                anns_meta.append(dict(fn(ann_id, image_meta), id=ann_id, image_id=image_meta["id"]))
        anns_meta.sort(key=lambda ann: ann["id"])

        with open(root / name, "w") as file:
            json.dump(dict(images=images_meta, annotations=anns_meta), file)

        return num_anns_per_image

    @staticmethod
    def _make_instances_data(ann_id, image_meta):
        def make_rle_segmentation():
            height, width = image_meta["height"], image_meta["width"]
            numel = height * width
            counts = []
            while sum(counts) <= numel:
                counts.append(int(torch.randint(5, 8, ())))
            if sum(counts) > numel:
                counts[-1] -= sum(counts) - numel
            return dict(counts=counts, size=[height, width])

        return dict(
            segmentation=make_rle_segmentation(),
            bbox=make_tensor((4,), dtype=torch.float32, low=0).tolist(),
            iscrowd=True,
            area=float(make_scalar(dtype=torch.float32)),
            category_id=int(make_scalar(dtype=torch.int64)),
        )

    @staticmethod
    def _make_captions_data(ann_id, image_meta):
        return dict(caption=f"Caption {ann_id} describing image {image_meta['id']}.")

    @classmethod
    def _make_annotations(cls, root, name, *, images_meta):
        num_anns_per_image = torch.zeros((len(images_meta),), dtype=torch.int64)
        for annotations, fn in (
            ("instances", cls._make_instances_data),
            ("captions", cls._make_captions_data),
        ):
            num_anns_per_image += cls._make_annotations_json(
                root, f"{annotations}_{name}.json", images_meta=images_meta, fn=fn
            )

        return int(num_anns_per_image.sum())

    @classmethod
    def generate(
        cls,
        root,
        *,
        year,
        num_samples,
    ):
        annotations_dir = root / "annotations"
        annotations_dir.mkdir()

        for split in ("train", "val"):
            config_name = f"{split}{year}"

            images_meta = cls._make_images_archive(root, config_name, num_samples=num_samples)
            cls._make_annotations(
                annotations_dir,
                config_name,
                images_meta=images_meta,
            )

        make_zip(root, f"annotations_trainval{year}.zip", annotations_dir)

        return num_samples


650
@DATASET_MOCKS.set_from_named_callable
Philip Meier's avatar
Philip Meier committed
651
def coco(info, root, config):
652
653
654
655
656
657
658
659
    return dict(
        zip(
            [config_ for config_ in info._configs if config_.year == config.year],
            itertools.repeat(CocoMockData.generate(root, year=config.year, num_samples=5)),
        )
    )


660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
class SBDMockData:
    _NUM_CATEGORIES = 20

    @classmethod
    def _make_split_files(cls, root_map):
        ids_map = {
            split: [f"2008_{idx:06d}" for idx in idcs]
            for split, idcs in (
                ("train", [0, 1, 2]),
                ("train_noval", [0, 2]),
                ("val", [3]),
            )
        }

        for split, ids in ids_map.items():
            with open(root_map[split] / f"{split}.txt", "w") as fh:
                fh.writelines(f"{id}\n" for id in ids)

        return sorted(set(itertools.chain(*ids_map.values()))), {split: len(ids) for split, ids in ids_map.items()}

    @classmethod
    def _make_anns_folder(cls, root, name, ids):
        from scipy.io import savemat

        anns_folder = root / name
        anns_folder.mkdir()

        sizes = torch.randint(1, 9, size=(len(ids), 2)).tolist()
        for id, size in zip(ids, sizes):
            savemat(
                anns_folder / f"{id}.mat",
                {
                    "GTcls": {
                        "Boundaries": cls._make_boundaries(size),
                        "Segmentation": cls._make_segmentation(size),
                    }
                },
            )
        return sizes

    @classmethod
    def _make_boundaries(cls, size):
        from scipy.sparse import csc_matrix

        return [
            [csc_matrix(torch.randint(0, 2, size=size, dtype=torch.uint8).numpy())] for _ in range(cls._NUM_CATEGORIES)
        ]

    @classmethod
    def _make_segmentation(cls, size):
        return torch.randint(0, cls._NUM_CATEGORIES + 1, size=size, dtype=torch.uint8).numpy()

    @classmethod
    def generate(cls, root):
        archive_folder = root / "benchmark_RELEASE"
        dataset_folder = archive_folder / "dataset"
        dataset_folder.mkdir(parents=True, exist_ok=True)

        ids, num_samples_map = cls._make_split_files(defaultdict(lambda: dataset_folder, {"train_noval": root}))
        sizes = cls._make_anns_folder(dataset_folder, "cls", ids)
        create_image_folder(
            dataset_folder, "img", lambda idx: f"{ids[idx]}.jpg", num_examples=len(ids), size=lambda idx: sizes[idx]
        )

        make_tar(root, "benchmark.tgz", archive_folder, compression="gz")

        return num_samples_map


@DATASET_MOCKS.set_from_named_callable
def sbd(info, root, _):
    num_samples_map = SBDMockData.generate(root)
    return {config: num_samples_map[config.split] for config in info._configs}


@DATASET_MOCKS.set_from_named_callable
def semeion(info, root, config):
    num_samples = 3

    images = torch.rand(num_samples, 256)
    labels = one_hot(torch.randint(len(info.categories), size=(num_samples,)))
    with open(root / "semeion.data", "w") as fh:
        for image, one_hot_label in zip(images, labels):
            image_columns = " ".join([f"{pixel.item():.4f}" for pixel in image])
            labels_columns = " ".join([str(label.item()) for label in one_hot_label])
            fh.write(f"{image_columns} {labels_columns}\n")

    return num_samples


class VOCMockData:
    _TRAIN_VAL_FILE_NAMES = {
        "2007": "VOCtrainval_06-Nov-2007.tar",
        "2008": "VOCtrainval_14-Jul-2008.tar",
        "2009": "VOCtrainval_11-May-2009.tar",
        "2010": "VOCtrainval_03-May-2010.tar",
        "2011": "VOCtrainval_25-May-2011.tar",
        "2012": "VOCtrainval_11-May-2012.tar",
    }
    _TEST_FILE_NAMES = {
        "2007": "VOCtest_06-Nov-2007.tar",
    }

    @classmethod
    def _make_split_files(cls, root, *, year, trainval):
        split_folder = root / "ImageSets"

        if trainval:
            idcs_map = {
                "train": [0, 1, 2],
                "val": [3, 4],
            }
            idcs_map["trainval"] = [*idcs_map["train"], *idcs_map["val"]]
773
        else:
774
775
776
777
            idcs_map = {
                "test": [5],
            }
        ids_map = {split: [f"{year}_{idx:06d}" for idx in idcs] for split, idcs in idcs_map.items()}
778

779
780
781
782
783
784
        for task_sub_folder in ("Main", "Segmentation"):
            task_folder = split_folder / task_sub_folder
            task_folder.mkdir(parents=True, exist_ok=True)
            for split, ids in ids_map.items():
                with open(task_folder / f"{split}.txt", "w") as fh:
                    fh.writelines(f"{id}\n" for id in ids)
785

786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
        return sorted(set(itertools.chain(*ids_map.values()))), {split: len(ids) for split, ids in ids_map.items()}

    @classmethod
    def _make_detection_anns_folder(cls, root, name, *, file_name_fn, num_examples):
        folder = root / name
        folder.mkdir(parents=True, exist_ok=True)

        for idx in range(num_examples):
            cls._make_detection_ann_file(folder, file_name_fn(idx))

    @classmethod
    def _make_detection_ann_file(cls, root, name):
        def add_child(parent, name, text=None):
            child = ET.SubElement(parent, name)
            child.text = text
            return child

        def add_name(obj, name="dog"):
            add_child(obj, "name", name)
            return name

        def add_bndbox(obj, bndbox=None):
            if bndbox is None:
                bndbox = {"xmin": "1", "xmax": "2", "ymin": "3", "ymax": "4"}

            obj = add_child(obj, "bndbox")
            for name, text in bndbox.items():
                add_child(obj, name, text)

            return bndbox

        annotation = ET.Element("annotation")
        obj = add_child(annotation, "object")
        data = dict(name=add_name(obj), bndbox=add_bndbox(obj))

        with open(root / name, "wb") as fh:
            fh.write(ET.tostring(annotation))

        return data

    @classmethod
    def generate(cls, root, *, year, trainval):
        archive_folder = root
        if year == "2011":
            archive_folder /= "TrainVal"
        data_folder = archive_folder / "VOCdevkit" / f"VOC{year}"
        data_folder.mkdir(parents=True, exist_ok=True)

        ids, num_samples_map = cls._make_split_files(data_folder, year=year, trainval=trainval)
        for make_folder_fn, name, suffix in [
            (create_image_folder, "JPEGImages", ".jpg"),
            (create_image_folder, "SegmentationClass", ".png"),
            (cls._make_detection_anns_folder, "Annotations", ".xml"),
        ]:
            make_folder_fn(data_folder, name, file_name_fn=lambda idx: ids[idx] + suffix, num_examples=len(ids))
        make_tar(root, (cls._TRAIN_VAL_FILE_NAMES if trainval else cls._TEST_FILE_NAMES)[year], data_folder)

        return num_samples_map


@DATASET_MOCKS.set_from_named_callable
def voc(info, root, config):
    trainval = config.split != "test"
    num_samples_map = VOCMockData.generate(root, year=config.year, trainval=trainval)
    return {
        config_: num_samples_map[config_.split]
        for config_ in info._configs
        if config_.year == config.year and ((config_.split == "test") ^ trainval)
    }


class CelebAMockData:
    @classmethod
    def _make_ann_file(cls, root, name, data, *, field_names=None):
        with open(root / name, "w") as file:
            if field_names:
                file.write(f"{len(data)}\r\n")
                file.write(" ".join(field_names) + "\r\n")
            file.writelines(" ".join(str(item) for item in row) + "\r\n" for row in data)

    _SPLIT_TO_IDX = {
        "train": 0,
        "val": 1,
        "test": 2,
    }

    @classmethod
    def _make_split_file(cls, root):
        num_samples_map = {"train": 4, "val": 3, "test": 2}

        data = [
            (f"{idx:06d}.jpg", cls._SPLIT_TO_IDX[split])
            for split, num_samples in num_samples_map.items()
            for idx in range(num_samples)
        ]
        cls._make_ann_file(root, "list_eval_partition.txt", data)

        image_file_names, _ = zip(*data)
        return image_file_names, num_samples_map

    @classmethod
    def _make_identity_file(cls, root, image_file_names):
        cls._make_ann_file(
            root, "identity_CelebA.txt", [(name, int(make_scalar(low=1, dtype=torch.int))) for name in image_file_names]
        )

    @classmethod
    def _make_attributes_file(cls, root, image_file_names):
        field_names = ("5_o_Clock_Shadow", "Young")
        data = [
            [name, *[" 1" if attr else "-1" for attr in make_tensor((len(field_names),), dtype=torch.bool)]]
            for name in image_file_names
        ]
        cls._make_ann_file(root, "list_attr_celeba.txt", data, field_names=(*field_names, ""))

    @classmethod
    def _make_bounding_boxes_file(cls, root, image_file_names):
        field_names = ("image_id", "x_1", "y_1", "width", "height")
        data = [
            [f"{name}  ", *[f"{coord:3d}" for coord in make_tensor((4,), low=0, dtype=torch.int).tolist()]]
            for name in image_file_names
        ]
        cls._make_ann_file(root, "list_bbox_celeba.txt", data, field_names=field_names)

    @classmethod
    def _make_landmarks_file(cls, root, image_file_names):
        field_names = ("lefteye_x", "lefteye_y", "rightmouth_x", "rightmouth_y")
        data = [
            [
                name,
                *[
                    f"{coord:4d}" if idx else coord
                    for idx, coord in enumerate(make_tensor((len(field_names),), low=0, dtype=torch.int).tolist())
                ],
            ]
            for name in image_file_names
        ]
        cls._make_ann_file(root, "list_landmarks_align_celeba.txt", data, field_names=field_names)

    @classmethod
    def generate(cls, root):
        image_file_names, num_samples_map = cls._make_split_file(root)

        image_files = create_image_folder(
            root, "img_align_celeba", file_name_fn=lambda idx: image_file_names[idx], num_examples=len(image_file_names)
        )
        make_zip(root, image_files[0].parent.with_suffix(".zip").name)

        for make_ann_file_fn in (
            cls._make_identity_file,
            cls._make_attributes_file,
            cls._make_bounding_boxes_file,
            cls._make_landmarks_file,
        ):
            make_ann_file_fn(root, image_file_names)

        return num_samples_map


@DATASET_MOCKS.set_from_named_callable
def celeba(info, root, _):
    num_samples_map = CelebAMockData.generate(root)
    return {config: num_samples_map[config.split] for config in info._configs}


@DATASET_MOCKS.set_from_named_callable
def dtd(info, root, _):
    data_folder = root / "dtd"

    num_images_per_class = 3
    image_folder = data_folder / "images"
    categories = {"banded", "marbled", "zigzagged"}
    image_ids_per_category = {
        category: [
            str(path.relative_to(path.parents[1]).as_posix())
            for path in create_image_folder(
                image_folder,
                category,
                file_name_fn=lambda idx: f"{category}_{idx:04d}.jpg",
                num_examples=num_images_per_class,
            )
        ]
        for category in categories
    }

    meta_folder = data_folder / "labels"
    meta_folder.mkdir()

    with open(meta_folder / "labels_joint_anno.txt", "w") as file:
        for cls, image_ids in image_ids_per_category.items():
            for image_id in image_ids:
                joint_categories = random.choices(
                    list(categories - {cls}), k=int(torch.randint(len(categories) - 1, ()))
                )
                file.write(" ".join([image_id, *sorted([cls, *joint_categories])]) + "\n")

    image_ids = list(itertools.chain(*image_ids_per_category.values()))
    splits = ("train", "val", "test")
    num_samples_map = {}
    for fold in range(1, 11):
        random.shuffle(image_ids)
        for offset, split in enumerate(splits):
            image_ids_in_config = image_ids[offset :: len(splits)]
            with open(meta_folder / f"{split}{fold}.txt", "w") as file:
                file.write("\n".join(image_ids_in_config) + "\n")

            num_samples_map[info.make_config(split=split, fold=str(fold))] = len(image_ids_in_config)

    make_tar(root, "dtd-r1.0.1.tar.gz", data_folder, compression="gz")

    return num_samples_map


@DATASET_MOCKS.set_from_named_callable
def fer2013(info, root, config):
    num_samples = 5 if config.split == "train" else 3

    path = root / f"{config.split}.txt"
    with open(path, "w", newline="") as file:
        field_names = ["emotion"] if config.split == "train" else []
        field_names.append("pixels")

        file.write(",".join(field_names) + "\n")

        writer = csv.DictWriter(file, fieldnames=field_names, quotechar='"', quoting=csv.QUOTE_NONNUMERIC)
        for _ in range(num_samples):
            rowdict = {
                "pixels": " ".join([str(int(pixel)) for pixel in torch.randint(256, (48 * 48,), dtype=torch.uint8)])
            }
            if config.split == "train":
                rowdict["emotion"] = int(torch.randint(7, ()))
            writer.writerow(rowdict)

    make_zip(root, f"{path.name}.zip", path)

    return num_samples


@DATASET_MOCKS.set_from_named_callable
def clevr(info, root, config):
    data_folder = root / "CLEVR_v1.0"

    num_samples_map = {
        "train": 3,
        "val": 2,
        "test": 1,
    }

    images_folder = data_folder / "images"
    image_files = {
        split: create_image_folder(
            images_folder,
            split,
            file_name_fn=lambda idx: f"CLEVR_{split}_{idx:06d}.jpg",
            num_examples=num_samples,
        )
        for split, num_samples in num_samples_map.items()
    }

    scenes_folder = data_folder / "scenes"
    scenes_folder.mkdir()
    for split in ["train", "val"]:
        with open(scenes_folder / f"CLEVR_{split}_scenes.json", "w") as file:
            json.dump(
                {
                    "scenes": [
                        {
                            "image_filename": image_file.name,
                            # We currently only return the number of objects in a scene.
                            # Thus, it is sufficient for now to only mock the number of elements.
                            "objects": [None] * int(torch.randint(1, 5, ())),
                        }
                        for image_file in image_files[split]
                    ]
                },
                file,
            )

    make_zip(root, f"{data_folder.name}.zip")

    return {config_: num_samples_map[config_.split] for config_ in info._configs}


class OxfordIIITPetMockData:
    @classmethod
    def _meta_to_split_and_classification_ann(cls, meta, idx):
        image_id = "_".join(
            [
                *[(str.title if meta["species"] == "cat" else str.lower)(part) for part in meta["cls"].split()],
                str(idx),
            ]
        )
        class_id = str(meta["label"] + 1)
        species = "1" if meta["species"] == "cat" else "2"
        breed_id = "-1"
        return (image_id, class_id, species, breed_id)

    @classmethod
    def generate(self, root):
        classification_anns_meta = (
            dict(cls="Abyssinian", label=0, species="cat"),
            dict(cls="Keeshond", label=18, species="dog"),
            dict(cls="Yorkshire Terrier", label=36, species="dog"),
        )
        split_and_classification_anns = [
            self._meta_to_split_and_classification_ann(meta, idx)
            for meta, idx in itertools.product(classification_anns_meta, (1, 2, 10))
        ]
        image_ids, *_ = zip(*split_and_classification_anns)

        image_files = create_image_folder(
            root, "images", file_name_fn=lambda idx: f"{image_ids[idx]}.jpg", num_examples=len(image_ids)
        )

        anns_folder = root / "annotations"
        anns_folder.mkdir()
        random.shuffle(split_and_classification_anns)
        splits = ("trainval", "test")
        num_samples_map = {}
        for offset, split in enumerate(splits):
            split_and_classification_anns_in_split = split_and_classification_anns[offset :: len(splits)]
            with open(anns_folder / f"{split}.txt", "w") as file:
                writer = csv.writer(file, delimiter=" ")
                for split_and_classification_ann in split_and_classification_anns_in_split:
                    writer.writerow(split_and_classification_ann)

            num_samples_map[split] = len(split_and_classification_anns_in_split)

        segmentation_files = create_image_folder(
            anns_folder, "trimaps", file_name_fn=lambda idx: f"{image_ids[idx]}.png", num_examples=len(image_ids)
        )

        # The dataset has some rogue files
        for path in image_files[:3]:
            path.with_suffix(".mat").touch()
        for path in segmentation_files:
            path.with_name(f".{path.name}").touch()

        make_tar(root, "images.tar")
        make_tar(root, anns_folder.with_suffix(".tar").name)

        return num_samples_map


@DATASET_MOCKS.set_from_named_callable
def oxford_iiit_pet(info, root, config):
    num_samples_map = OxfordIIITPetMockData.generate(root)
    return {config_: num_samples_map[config_.split] for config_ in info._configs}


class _CUB200MockData:
    @classmethod
    def _category_folder(cls, category, idx):
        return f"{idx:03d}.{category}"

    @classmethod
    def _file_stem(cls, category, idx):
        return f"{category}_{idx:04d}"

    @classmethod
    def _make_images(cls, images_folder):
        image_files = []
        for category_idx, category in [
            (1, "Black_footed_Albatross"),
            (100, "Brown_Pelican"),
            (200, "Common_Yellowthroat"),
        ]:
            image_files.extend(
                create_image_folder(
                    images_folder,
                    cls._category_folder(category, category_idx),
                    lambda image_idx: f"{cls._file_stem(category, image_idx)}.jpg",
                    num_examples=5,
                )
            )

        return image_files


class CUB2002011MockData(_CUB200MockData):
    @classmethod
    def _make_archive(cls, root):
        archive_folder = root / "CUB_200_2011"

        images_folder = archive_folder / "images"
        image_files = cls._make_images(images_folder)
        image_ids = list(range(1, len(image_files) + 1))

        with open(archive_folder / "images.txt", "w") as file:
            file.write(
                "\n".join(
                    f"{id} {path.relative_to(images_folder).as_posix()}" for id, path in zip(image_ids, image_files)
                )
            )

        split_ids = torch.randint(2, (len(image_ids),)).tolist()
        counts = Counter(split_ids)
        num_samples_map = {"train": counts[1], "test": counts[0]}
        with open(archive_folder / "train_test_split.txt", "w") as file:
            file.write("\n".join(f"{image_id} {split_id}" for image_id, split_id in zip(image_ids, split_ids)))

        with open(archive_folder / "bounding_boxes.txt", "w") as file:
            file.write(
                "\n".join(
                    " ".join(
                        str(item)
                        for item in [image_id, *make_tensor((4,), dtype=torch.int, low=0).to(torch.float).tolist()]
                    )
                    for image_id in image_ids
                )
            )

        make_tar(root, archive_folder.with_suffix(".tgz").name, compression="gz")

        return image_files, num_samples_map

    @classmethod
    def _make_segmentations(cls, root, image_files):
        segmentations_folder = root / "segmentations"
        for image_file in image_files:
            folder = segmentations_folder.joinpath(image_file.relative_to(image_file.parents[1]))
            folder.mkdir(exist_ok=True, parents=True)
            create_image_file(
                folder,
                image_file.with_suffix(".png").name,
                size=[1, *make_tensor((2,), low=3, dtype=torch.int).tolist()],
            )

        make_tar(root, segmentations_folder.with_suffix(".tgz").name)

    @classmethod
    def generate(cls, root):
        image_files, num_samples_map = cls._make_archive(root)
        cls._make_segmentations(root, image_files)
        return num_samples_map


class CUB2002010MockData(_CUB200MockData):
    @classmethod
    def _make_hidden_rouge_file(cls, *files):
        for file in files:
            (file.parent / f"._{file.name}").touch()

    @classmethod
    def _make_splits(cls, root, image_files):
        split_folder = root / "lists"
        split_folder.mkdir()
        random.shuffle(image_files)
        splits = ("train", "test")
        num_samples_map = {}
        for offset, split in enumerate(splits):
            image_files_in_split = image_files[offset :: len(splits)]

            split_file = split_folder / f"{split}.txt"
            with open(split_file, "w") as file:
                file.write(
                    "\n".join(
                        sorted(
                            str(image_file.relative_to(image_file.parents[1]).as_posix())
                            for image_file in image_files_in_split
                        )
                    )
                )

            cls._make_hidden_rouge_file(split_file)
            num_samples_map[split] = len(image_files_in_split)

        make_tar(root, split_folder.with_suffix(".tgz").name, compression="gz")

        return num_samples_map

    @classmethod
    def _make_anns(cls, root, image_files):
        from scipy.io import savemat

        anns_folder = root / "annotations-mat"
        for image_file in image_files:
            ann_file = anns_folder / image_file.with_suffix(".mat").relative_to(image_file.parents[1])
            ann_file.parent.mkdir(parents=True, exist_ok=True)

            savemat(
                ann_file,
                {
                    "seg": torch.randint(
                        256, make_tensor((2,), low=3, dtype=torch.int).tolist(), dtype=torch.uint8
                    ).numpy(),
                    "bbox": dict(
                        zip(("left", "top", "right", "bottom"), make_tensor((4,), dtype=torch.uint8).tolist())
                    ),
                },
            )

        readme_file = anns_folder / "README.txt"
        readme_file.touch()
        cls._make_hidden_rouge_file(readme_file)

        make_tar(root, "annotations.tgz", anns_folder, compression="gz")

    @classmethod
    def generate(cls, root):
        images_folder = root / "images"
        image_files = cls._make_images(images_folder)
        cls._make_hidden_rouge_file(*image_files)
        make_tar(root, images_folder.with_suffix(".tgz").name, compression="gz")

        num_samples_map = cls._make_splits(root, image_files)
        cls._make_anns(root, image_files)

        return num_samples_map


@DATASET_MOCKS.set_from_named_callable
def cub200(info, root, config):
    num_samples_map = (CUB2002011MockData if config.year == "2011" else CUB2002010MockData).generate(root)
    return {config_: num_samples_map[config_.split] for config_ in info._configs if config_.year == config.year}