boxes.py 8.8 KB
Newer Older
1
import torch
eellison's avatar
eellison committed
2
from torch import Tensor
3
from typing import Tuple
4
from ._box_convert import _box_cxcywh_to_xyxy, _box_xyxy_to_cxcywh, _box_xywh_to_xyxy, _box_xyxy_to_xywh
5
import torchvision
6
from torchvision.extension import _assert_has_ops
7
8


9
def nms(boxes: Tensor, scores: Tensor, iou_threshold: float) -> Tensor:
10
11
12
13
14
15
16
17
    """
    Performs non-maximum suppression (NMS) on the boxes according
    to their intersection-over-union (IoU).

    NMS iteratively removes lower scoring boxes which have an
    IoU greater than iou_threshold with another (higher scoring)
    box.

Francisco Massa's avatar
Francisco Massa committed
18
19
20
    If multiple boxes have the exact same score and satisfy the IoU
    criterion with respect to a reference box, the selected box is
    not guaranteed to be the same between CPU and GPU. This is similar
21
22
    to the behavior of argsort in PyTorch when repeated values are present.

23
24
25
26
27
28
29
30
31
    Parameters
    ----------
    boxes : Tensor[N, 4])
        boxes to perform NMS on. They
        are expected to be in (x1, y1, x2, y2) format
    scores : Tensor[N]
        scores for each one of the boxes
    iou_threshold : float
        discards all overlapping
32
        boxes with IoU > iou_threshold
33

34
35
36
37
38
39
    Returns
    -------
    keep : Tensor
        int64 tensor with the indices
        of the elements that have been kept
        by NMS, sorted in decreasing order of scores
40
    """
41
    _assert_has_ops()
42
    return torch.ops.torchvision.nms(boxes, scores, iou_threshold)
43
44


45
@torch.jit._script_if_tracing
46
47
48
49
50
51
def batched_nms(
    boxes: Tensor,
    scores: Tensor,
    idxs: Tensor,
    iou_threshold: float,
) -> Tensor:
52
53
54
55
56
57
    """
    Performs non-maximum suppression in a batched fashion.

    Each index value correspond to a category, and NMS
    will not be applied between elements of different categories.

58
59
60
61
62
63
64
65
66
67
68
    Parameters
    ----------
    boxes : Tensor[N, 4]
        boxes where NMS will be performed. They
        are expected to be in (x1, y1, x2, y2) format
    scores : Tensor[N]
        scores for each one of the boxes
    idxs : Tensor[N]
        indices of the categories for each one of the boxes.
    iou_threshold : float
        discards all overlapping boxes
69
        with IoU > iou_threshold
70

71
72
73
74
75
76
    Returns
    -------
    keep : Tensor
        int64 tensor with the indices of
        the elements that have been kept by NMS, sorted
        in decreasing order of scores
77
    """
78
79
    if boxes.numel() == 0:
        return torch.empty((0,), dtype=torch.int64, device=boxes.device)
80
81
82
83
    # strategy: in order to perform NMS independently per class.
    # we add an offset to all the boxes. The offset is dependent
    # only on the class idx, and is large enough so that boxes
    # from different classes do not overlap
84
85
86
87
88
89
    else:
        max_coordinate = boxes.max()
        offsets = idxs.to(boxes) * (max_coordinate + torch.tensor(1).to(boxes))
        boxes_for_nms = boxes + offsets[:, None]
        keep = nms(boxes_for_nms, scores, iou_threshold)
        return keep
90
91


92
def remove_small_boxes(boxes: Tensor, min_size: float) -> Tensor:
93
94
95
    """
    Remove boxes which contains at least one side smaller than min_size.

96
    Args:
97
        boxes (Tensor[N, 4]): boxes in (x1, y1, x2, y2) format
eellison's avatar
eellison committed
98
        min_size (float): minimum size
99
100
101
102
103

    Returns:
        keep (Tensor[K]): indices of the boxes that have both sides
            larger than min_size
    """
104
105
    ws, hs = boxes[:, 2] - boxes[:, 0], boxes[:, 3] - boxes[:, 1]
    keep = (ws >= min_size) & (hs >= min_size)
106
    keep = torch.where(keep)[0]
107
108
109
    return keep


110
def clip_boxes_to_image(boxes: Tensor, size: Tuple[int, int]) -> Tensor:
111
    """
112
113
    Clip boxes so that they lie inside an image of size `size`.

114
    Args:
115
        boxes (Tensor[N, 4]): boxes in (x1, y1, x2, y2) format
116
        size (Tuple[height, width]): size of the image
117
118
119
120
121
122
123
124

    Returns:
        clipped_boxes (Tensor[N, 4])
    """
    dim = boxes.dim()
    boxes_x = boxes[..., 0::2]
    boxes_y = boxes[..., 1::2]
    height, width = size
125
126
127
128
129
130
131
132
133
134

    if torchvision._is_tracing():
        boxes_x = torch.max(boxes_x, torch.tensor(0, dtype=boxes.dtype, device=boxes.device))
        boxes_x = torch.min(boxes_x, torch.tensor(width, dtype=boxes.dtype, device=boxes.device))
        boxes_y = torch.max(boxes_y, torch.tensor(0, dtype=boxes.dtype, device=boxes.device))
        boxes_y = torch.min(boxes_y, torch.tensor(height, dtype=boxes.dtype, device=boxes.device))
    else:
        boxes_x = boxes_x.clamp(min=0, max=width)
        boxes_y = boxes_y.clamp(min=0, max=height)

135
136
137
138
    clipped_boxes = torch.stack((boxes_x, boxes_y), dim=dim)
    return clipped_boxes.reshape(boxes.shape)


139
140
141
142
143
144
145
146
147
148
149
150
def box_convert(boxes: Tensor, in_fmt: str, out_fmt: str) -> Tensor:
    """
    Converts boxes from given in_fmt to out_fmt.
    Supported in_fmt and out_fmt are:

    'xyxy': boxes are represented via corners, x1, y1 being top left and x2, y2 being bottom right.

    'xywh' : boxes are represented via corner, width and height, x1, y2 being top left, w, h being width and height.

    'cxcywh' : boxes are represented via centre, width and height, cx, cy being center of box, w, h
    being width and height.

151
    Args:
152
153
154
155
156
157
158
        boxes (Tensor[N, 4]): boxes which will be converted.
        in_fmt (str): Input format of given boxes. Supported formats are ['xyxy', 'xywh', 'cxcywh'].
        out_fmt (str): Output format of given boxes. Supported formats are ['xyxy', 'xywh', 'cxcywh']

    Returns:
        boxes (Tensor[N, 4]): Boxes into converted format.
    """
159

160
    allowed_fmts = ("xyxy", "xywh", "cxcywh")
161
162
    if in_fmt not in allowed_fmts or out_fmt not in allowed_fmts:
        raise ValueError("Unsupported Bounding Box Conversions for given in_fmt and out_fmt")
163
164

    if in_fmt == out_fmt:
165
        return boxes.clone()
166
167

    if in_fmt != 'xyxy' and out_fmt != 'xyxy':
168
        # convert to xyxy and change in_fmt xyxy
169
        if in_fmt == "xywh":
170
            boxes = _box_xywh_to_xyxy(boxes)
171
        elif in_fmt == "cxcywh":
172
173
174
175
176
177
178
179
180
181
182
183
184
185
            boxes = _box_cxcywh_to_xyxy(boxes)
        in_fmt = 'xyxy'

    if in_fmt == "xyxy":
        if out_fmt == "xywh":
            boxes = _box_xyxy_to_xywh(boxes)
        elif out_fmt == "cxcywh":
            boxes = _box_xyxy_to_cxcywh(boxes)
    elif out_fmt == "xyxy":
        if in_fmt == "xywh":
            boxes = _box_xywh_to_xyxy(boxes)
        elif in_fmt == "cxcywh":
            boxes = _box_cxcywh_to_xyxy(boxes)
    return boxes
186
187


188
def box_area(boxes: Tensor) -> Tensor:
189
190
    """
    Computes the area of a set of bounding boxes, which are specified by its
191
    (x1, y1, x2, y2) coordinates.
192

193
    Args:
194
        boxes (Tensor[N, 4]): boxes for which the area will be computed. They
195
            are expected to be in (x1, y1, x2, y2) format
196
197
198
199
200
201
202
203
204

    Returns:
        area (Tensor[N]): area for each box
    """
    return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])


# implementation from https://github.com/kuangliu/torchcv/blob/master/torchcv/utils/box.py
# with slight modifications
205
def box_iou(boxes1: Tensor, boxes2: Tensor) -> Tensor:
206
207
208
    """
    Return intersection-over-union (Jaccard index) of boxes.

209
210
    Both sets of boxes are expected to be in (x1, y1, x2, y2) format.

211
    Args:
212
213
214
215
        boxes1 (Tensor[N, 4])
        boxes2 (Tensor[M, 4])

    Returns:
Aditya Oke's avatar
Aditya Oke committed
216
        iou (Tensor[N, M]): the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2
217
218
219
220
221
222
223
224
225
226
227
228
    """
    area1 = box_area(boxes1)
    area2 = box_area(boxes2)

    lt = torch.max(boxes1[:, None, :2], boxes2[:, :2])  # [N,M,2]
    rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])  # [N,M,2]

    wh = (rb - lt).clamp(min=0)  # [N,M,2]
    inter = wh[:, :, 0] * wh[:, :, 1]  # [N,M]

    iou = inter / (area1[:, None] + area2 - inter)
    return iou
Aditya Oke's avatar
Aditya Oke committed
229
230
231
232
233
234
235
236
237


# Implementation adapted from https://github.com/facebookresearch/detr/blob/master/util/box_ops.py
def generalized_box_iou(boxes1: Tensor, boxes2: Tensor) -> Tensor:
    """
    Return generalized intersection-over-union (Jaccard index) of boxes.

    Both sets of boxes are expected to be in (x1, y1, x2, y2) format.

238
    Args:
Aditya Oke's avatar
Aditya Oke committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
        boxes1 (Tensor[N, 4])
        boxes2 (Tensor[M, 4])

    Returns:
        generalized_iou (Tensor[N, M]): the NxM matrix containing the pairwise generalized_IoU values
        for every element in boxes1 and boxes2
    """

    # degenerate boxes gives inf / nan results
    # so do an early check
    assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
    assert (boxes2[:, 2:] >= boxes2[:, :2]).all()

    area1 = box_area(boxes1)
    area2 = box_area(boxes2)

    lt = torch.max(boxes1[:, None, :2], boxes2[:, :2])  # [N,M,2]
    rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])  # [N,M,2]

    wh = (rb - lt).clamp(min=0)  # [N,M,2]
    inter = wh[:, :, 0] * wh[:, :, 1]  # [N,M]

    union = area1[:, None] + area2 - inter

    iou = inter / union

    lti = torch.min(boxes1[:, None, :2], boxes2[:, :2])
    rbi = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])

    whi = (rbi - lti).clamp(min=0)  # [N,M,2]
    areai = whi[:, :, 0] * whi[:, :, 1]

    return iou - (areai - union) / areai