"vscode:/vscode.git/clone" did not exist on "428512f88abd956552fc390e902666c8e9b94593"
backbone_utils.py 5.3 KB
Newer Older
1
import warnings
2
3
4
5
6
7
8
9
10
from collections import OrderedDict
from torch import nn
from torchvision.ops.feature_pyramid_network import FeaturePyramidNetwork, LastLevelMaxPool

from torchvision.ops import misc as misc_nn_ops
from .._utils import IntermediateLayerGetter
from .. import resnet


eellison's avatar
eellison committed
11
class BackboneWithFPN(nn.Module):
12
13
14
15
16
    """
    Adds a FPN on top of a model.
    Internally, it uses torchvision.models._utils.IntermediateLayerGetter to
    extract a submodel that returns the feature maps specified in return_layers.
    The same limitations of IntermediatLayerGetter apply here.
17
    Args:
18
19
20
21
22
23
24
25
26
27
28
        backbone (nn.Module)
        return_layers (Dict[name, new_name]): a dict containing the names
            of the modules for which the activations will be returned as
            the key of the dict, and the value of the dict is the name
            of the returned activation (which the user can specify).
        in_channels_list (List[int]): number of channels for each feature map
            that is returned, in the order they are present in the OrderedDict
        out_channels (int): number of channels in the FPN.
    Attributes:
        out_channels (int): the number of channels in the FPN
    """
29
    def __init__(self, backbone, return_layers, in_channels_list, out_channels, extra_blocks=None):
eellison's avatar
eellison committed
30
        super(BackboneWithFPN, self).__init__()
31
32
33
34

        if extra_blocks is None:
            extra_blocks = LastLevelMaxPool()

eellison's avatar
eellison committed
35
36
        self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)
        self.fpn = FeaturePyramidNetwork(
37
38
            in_channels_list=in_channels_list,
            out_channels=out_channels,
39
            extra_blocks=extra_blocks,
40
41
42
        )
        self.out_channels = out_channels

eellison's avatar
eellison committed
43
44
45
46
47
    def forward(self, x):
        x = self.body(x)
        x = self.fpn(x)
        return x

48

49
50
51
52
53
54
55
56
def resnet_fpn_backbone(
    backbone_name,
    pretrained,
    norm_layer=misc_nn_ops.FrozenBatchNorm2d,
    trainable_layers=3,
    returned_layers=None,
    extra_blocks=None
):
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
    """
    Constructs a specified ResNet backbone with FPN on top. Freezes the specified number of layers in the backbone.

    Examples::

        >>> from torchvision.models.detection.backbone_utils import resnet_fpn_backbone
        >>> backbone = resnet_fpn_backbone('resnet50', pretrained=True, trainable_layers=3)
        >>> # get some dummy image
        >>> x = torch.rand(1,3,64,64)
        >>> # compute the output
        >>> output = backbone(x)
        >>> print([(k, v.shape) for k, v in output.items()])
        >>> # returns
        >>>   [('0', torch.Size([1, 256, 16, 16])),
        >>>    ('1', torch.Size([1, 256, 8, 8])),
        >>>    ('2', torch.Size([1, 256, 4, 4])),
        >>>    ('3', torch.Size([1, 256, 2, 2])),
        >>>    ('pool', torch.Size([1, 256, 1, 1]))]

76
    Args:
77
78
79
80
81
82
83
84
        backbone_name (string): resnet architecture. Possible values are 'ResNet', 'resnet18', 'resnet34', 'resnet50',
             'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2'
        norm_layer (torchvision.ops): it is recommended to use the default value. For details visit:
            (https://github.com/facebookresearch/maskrcnn-benchmark/issues/267)
        pretrained (bool): If True, returns a model with backbone pre-trained on Imagenet
        trainable_layers (int): number of trainable (not frozen) resnet layers starting from final block.
            Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable.
    """
85
86
87
88
    backbone = resnet.__dict__[backbone_name](
        pretrained=pretrained,
        norm_layer=norm_layer)

89
90
91
92
    # select layers that wont be frozen
    assert trainable_layers <= 5 and trainable_layers >= 0
    layers_to_train = ['layer4', 'layer3', 'layer2', 'layer1', 'conv1'][:trainable_layers]
    # freeze layers only if pretrained backbone is used
93
    for name, parameter in backbone.named_parameters():
94
        if all([not name.startswith(layer) for layer in layers_to_train]):
95
96
            parameter.requires_grad_(False)

97
98
99
100
101
102
103
    if extra_blocks is None:
        extra_blocks = LastLevelMaxPool()

    if returned_layers is None:
        returned_layers = [1, 2, 3, 4]
    assert min(returned_layers) > 0 and max(returned_layers) < 5
    return_layers = {f'layer{k}': str(v) for v, k in enumerate(returned_layers)}
104

105
    in_channels_stage2 = backbone.inplanes // 8
106
    in_channels_list = [in_channels_stage2 * 2 ** (i - 1) for i in returned_layers]
107
    out_channels = 256
108
    return BackboneWithFPN(backbone, return_layers, in_channels_list, out_channels, extra_blocks=extra_blocks)
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124


def _validate_resnet_trainable_layers(pretrained, trainable_backbone_layers):
    # dont freeze any layers if pretrained model or backbone is not used
    if not pretrained:
        if trainable_backbone_layers is not None:
            warnings.warn(
                "Changing trainable_backbone_layers has not effect if "
                "neither pretrained nor pretrained_backbone have been set to True, "
                "falling back to trainable_backbone_layers=5 so that all layers are trainable")
        trainable_backbone_layers = 5
    # by default, freeze first 2 blocks following Faster R-CNN
    if trainable_backbone_layers is None:
        trainable_backbone_layers = 3
    assert trainable_backbone_layers <= 5 and trainable_backbone_layers >= 0
    return trainable_backbone_layers