ps_roi_pool_kernel.cu 9.61 KB
Newer Older
1
#include <ATen/ATen.h>
2
3
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
4
#include <torch/library.h>
5
#include <THC/THCAtomics.cuh>
6
7

#include "cuda_helpers.h"
8
9
10
11
12

namespace vision {
namespace ops {

namespace {
13
14

template <typename T>
15
__global__ void ps_roi_pool_forward_kernel_impl(
16
    int nthreads,
17
18
    const T* input,
    const T spatial_scale,
19
20
21
22
23
    int channels,
    int height,
    int width,
    int pooled_height,
    int pooled_width,
24
    const T* rois,
25
    int channels_out,
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    T* output,
    int* channel_mapping) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c_out, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c_out = (index / pooled_width / pooled_height) % channels_out;
    int n = index / pooled_width / pooled_height / channels_out;

    // (n, c_in, ph, pw) is the associated element in the input
    int c_in = (c_out * pooled_height + ph) * pooled_width + pw;

    // [start, end) interval for spatial sampling
    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];
    int roi_start_w = roundf(offset_rois[1] * spatial_scale);
    int roi_start_h = roundf(offset_rois[2] * spatial_scale);
    int roi_end_w = roundf(offset_rois[3] * spatial_scale);
    int roi_end_h = roundf(offset_rois[4] * spatial_scale);

    // Force too small ROIs to be 1x1
    int roi_width = max(roi_end_w - roi_start_w, 1);
    int roi_height = max(roi_end_h - roi_start_h, 1);
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    int hstart = static_cast<int>(floor(static_cast<T>(ph) * bin_size_h));
    int wstart = static_cast<int>(floor(static_cast<T>(pw) * bin_size_w));
    int hend = static_cast<int>(ceil(static_cast<T>(ph + 1) * bin_size_h));
    int wend = static_cast<int>(ceil(static_cast<T>(pw + 1) * bin_size_w));

    // Add roi offsets and clip to input boundaries
    hstart = min(max(hstart + roi_start_h, 0), height - 1);
    hend = min(max(hend + roi_start_h, 0), height - 1);
    wstart = min(max(wstart + roi_start_w, 0), width - 1);
    wend = min(max(wend + roi_start_w, 0), width - 1);
    bool is_empty = (hend <= hstart) || (wend <= wstart);

    const T* offset_input =
        input + (roi_batch_ind * channels + c_in) * height * width;
    T out_sum = 0;
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
        int input_index = h * width + w;
        out_sum += offset_input[input_index];
      }
    }

    T bin_area = (hend - hstart) * (wend - wstart);
    output[index] = is_empty ? static_cast<T>(0) : out_sum / bin_area;
    channel_mapping[index] = c_in;
  }
}

template <typename T>
81
__global__ void ps_roi_pool_backward_kernel_impl(
82
    int nthreads,
83
84
    const T* grad_output,
    const int* channel_mapping,
85
    int num_rois,
86
    const T spatial_scale,
87
88
89
90
91
92
    int channels,
    int height,
    int width,
    int pooled_height,
    int pooled_width,
    int channels_out,
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    T* grad_input,
    const T* rois) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, *, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int n = index / pooled_width / pooled_height / channels_out;

    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];
    int roi_start_w = roundf(offset_rois[1] * spatial_scale);
    int roi_start_h = roundf(offset_rois[2] * spatial_scale);
    int roi_end_w = roundf(offset_rois[3] * spatial_scale);
    int roi_end_h = roundf(offset_rois[4] * spatial_scale);

    // Force too small ROIs to be 1x1
    int roi_width = max(roi_end_w - roi_start_w, 1);
    int roi_height = max(roi_end_h - roi_start_h, 1);
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    int hstart = static_cast<int>(floor(static_cast<T>(ph) * bin_size_h));
    int wstart = static_cast<int>(floor(static_cast<T>(pw) * bin_size_w));
    int hend = static_cast<int>(ceil(static_cast<T>(ph + 1) * bin_size_h));
    int wend = static_cast<int>(ceil(static_cast<T>(pw + 1) * bin_size_w));

    // Add roi offsets and clip to input boundaries
    hstart = min(max(hstart + roi_start_h, 0), height);
    hend = min(max(hend + roi_start_h, 0), height);
    wstart = min(max(wstart + roi_start_w, 0), width);
    wend = min(max(wend + roi_start_w, 0), width);
    bool is_empty = (hend <= hstart) || (wend <= wstart);

    int c_in = channel_mapping[index];
    T* grad_input_offset =
        grad_input + (roi_batch_ind * channels + c_in) * height * width;
    T bin_area = (hend - hstart) * (wend - wstart);
    T diff_val = is_empty ? static_cast<T>(0) : grad_output[index] / bin_area;
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
        int grad_input_index = h * width + w;
        atomicAdd(grad_input_offset + grad_input_index, diff_val);
      }
    }
  }
}

140
std::tuple<at::Tensor, at::Tensor> ps_roi_pool_forward_kernel(
141
142
    const at::Tensor& input,
    const at::Tensor& rois,
143
144
145
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width) {
146
  // Check if input tensors are CUDA tensors
vfdev's avatar
vfdev committed
147
148
149
150
  TORCH_CHECK(input.is_cuda(), "input must be a CUDA tensor");
  TORCH_CHECK(rois.is_cuda(), "rois must be a CUDA tensor");
  TORCH_CHECK(
      rois.size(1) == 5, "Tensor rois should have shape as Tensor[K, 5]");
151
152
153

  at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};

154
  at::CheckedFrom c = "ps_roi_pool_forward_kernel";
155
156
157
158
159
160
161
162
163
164
  at::checkAllSameGPU(c, {input_t, rois_t});
  at::checkAllSameType(c, {input_t, rois_t});

  at::cuda::CUDAGuard device_guard(input.device());

  auto num_rois = rois.size(0);
  auto channels = input.size(1);
  auto height = input.size(2);
  auto width = input.size(3);

vfdev's avatar
vfdev committed
165
  TORCH_CHECK(
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
      channels % (pooled_height * pooled_width) == 0,
      "input channels must be a multiple of pooling height * pooling width");
  int channels_out = channels / (pooled_height * pooled_width);

  auto output = at::zeros(
      {num_rois, channels_out, pooled_height, pooled_width}, input.options());
  auto channel_mapping =
      at::zeros(output.sizes(), input.options().dtype(at::kInt));

  auto output_size = output.numel();
  if (output_size == 0) {
    AT_CUDA_CHECK(cudaGetLastError());
    return std::make_tuple(output, channel_mapping);
  }

  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

183
  dim3 grid(std::min(
184
      ceil_div(static_cast<int64_t>(output_size), static_cast<int64_t>(512)),
185
      static_cast<int64_t>(4096)));
186
187
  dim3 block(512);

188
  auto input_ = input.contiguous(), rois_ = rois.contiguous();
189
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
190
      input.scalar_type(), "ps_roi_pool_forward_kernel", [&] {
191
        ps_roi_pool_forward_kernel_impl<scalar_t><<<grid, block, 0, stream>>>(
192
            output_size,
193
            input_.data_ptr<scalar_t>(),
194
195
196
197
198
199
            spatial_scale,
            channels,
            height,
            width,
            pooled_height,
            pooled_width,
200
            rois_.data_ptr<scalar_t>(),
201
            channels_out,
202
203
            output.data_ptr<scalar_t>(),
            channel_mapping.data_ptr<int>());
204
205
206
207
208
      });
  AT_CUDA_CHECK(cudaGetLastError());
  return std::make_tuple(output, channel_mapping);
}

209
at::Tensor ps_roi_pool_backward_kernel(
210
211
212
    const at::Tensor& grad,
    const at::Tensor& rois,
    const at::Tensor& channel_mapping,
213
214
215
216
217
218
219
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t batch_size,
    int64_t channels,
    int64_t height,
    int64_t width) {
220
  // Check if input tensors are CUDA tensors
vfdev's avatar
vfdev committed
221
222
223
  TORCH_CHECK(grad.is_cuda(), "grad must be a CUDA tensor");
  TORCH_CHECK(rois.is_cuda(), "rois must be a CUDA tensor");
  TORCH_CHECK(
224
      channel_mapping.is_cuda(), "channel_mapping must be a CUDA tensor");
225
226
227
228

  at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2},
      channel_mapping_t{channel_mapping, "channel_mapping", 3};

229
  at::CheckedFrom c = "ps_roi_pool_backward_kernel";
230
231
232
233
234
235
236
237
238
239
240
  at::checkAllSameGPU(c, {grad_t, rois_t, channel_mapping_t});
  at::checkAllSameType(c, {grad_t, rois_t});

  at::cuda::CUDAGuard device_guard(grad.device());

  auto num_rois = rois.size(0);
  auto grad_input =
      at::zeros({batch_size, channels, height, width}, grad.options());

  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

241
  dim3 grid(std::min(
242
      ceil_div(static_cast<int64_t>(grad.numel()), static_cast<int64_t>(512)),
243
      static_cast<int64_t>(4096)));
244
245
246
247
248
249
250
251
252
253
  dim3 block(512);

  // handle possibly empty gradients
  if (grad.numel() == 0) {
    AT_CUDA_CHECK(cudaGetLastError());
    return grad_input;
  }

  int channels_out = channels / (pooled_height * pooled_width);

254
  auto grad_ = grad.contiguous(), rois_ = rois.contiguous();
255
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
256
      grad.scalar_type(), "ps_roi_pool_backward_kernel", [&] {
257
        ps_roi_pool_backward_kernel_impl<scalar_t><<<grid, block, 0, stream>>>(
258
            grad.numel(),
259
            grad_.data_ptr<scalar_t>(),
260
            channel_mapping.data_ptr<int>(),
261
262
263
264
265
266
267
268
            num_rois,
            spatial_scale,
            channels,
            height,
            width,
            pooled_height,
            pooled_width,
            channels_out,
269
            grad_input.data_ptr<scalar_t>(),
270
            rois_.data_ptr<scalar_t>());
271
272
273
274
      });
  AT_CUDA_CHECK(cudaGetLastError());
  return grad_input;
}
275

276
277
278
279
280
281
282
} // namespace

TORCH_LIBRARY_IMPL(torchvision, CUDA, m) {
  m.impl("ps_roi_pool", ps_roi_pool_forward_kernel);
  m.impl("_ps_roi_pool_backward", ps_roi_pool_backward_kernel);
}

283
284
} // namespace ops
} // namespace vision