ps_roi_align_kernel.cu 13.2 KB
Newer Older
1
#include <ATen/ATen.h>
2
3
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
4
#include <torch/library.h>
5
#include <THC/THCAtomics.cuh>
6
7

#include "cuda_helpers.h"
8
9
10
11
12

namespace vision {
namespace ops {

namespace {
13
14
15
16

template <typename T>
__device__ T bilinear_interpolate(
    const T* input,
17
18
    int height,
    int width,
19
20
    T y,
    T x,
21
    int index /* index for debug only*/) {
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
  // deal with cases that inverse elements are out of feature map boundary
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    // empty
    return 0;
  }

  if (y <= 0)
    y = 0;
  if (x <= 0)
    x = 0;

  int y_low = (int)y;
  int x_low = (int)x;
  int y_high;
  int x_high;

  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = (T)y_low;
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = (T)x_low;
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low;
  T lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;

  // do bilinear interpolation
  T v1 = input[y_low * width + x_low];
  T v2 = input[y_low * width + x_high];
  T v3 = input[y_high * width + x_low];
  T v4 = input[y_high * width + x_high];
  T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

  T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);

  return val;
}

template <typename T>
69
__global__ void ps_roi_align_forward_kernel_impl(
70
    int nthreads,
71
72
    const T* input,
    const T spatial_scale,
73
74
75
76
77
78
    int channels,
    int height,
    int width,
    int pooled_height,
    int pooled_width,
    int sampling_ratio,
79
    const T* rois,
80
    int channels_out,
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    T* output,
    int* channel_mapping) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c_out, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c_out = (index / pooled_width / pooled_height) % channels_out;
    int n = index / pooled_width / pooled_height / channels_out;

    // (n, c_in, ph, pw) is the associated element in the input
    int c_in = (c_out * pooled_height + ph) * pooled_width + pw;

    // [start, end) interval for spatial sampling
    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];

    // Do not using rounding; this implementation detail is critical
    T roi_start_w = offset_rois[1] * spatial_scale - static_cast<T>(0.5);
    T roi_start_h = offset_rois[2] * spatial_scale - static_cast<T>(0.5);
    T roi_end_w = offset_rois[3] * spatial_scale - static_cast<T>(0.5);
    T roi_end_h = offset_rois[4] * spatial_scale - static_cast<T>(0.5);

    T roi_width = roi_end_w - roi_start_w;
    T roi_height = roi_end_h - roi_start_h;
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    // Do not using floor/ceil; this implementation detail is critical
    T hstart = static_cast<T>(ph) * bin_size_h + roi_start_h;
    T wstart = static_cast<T>(pw) * bin_size_w + roi_start_w;

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : ceil(roi_height / pooled_height);
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
    const T count = roi_bin_grid_h * roi_bin_grid_w;

    const T* offset_input =
        input + (roi_batch_ind * channels + c_in) * height * width;
    T out_sum = 0;
    for (int iy = 0; iy < roi_bin_grid_h; iy++) {
      const T y = hstart +
          static_cast<T>(iy + .5f) * bin_size_h /
              static_cast<T>(roi_bin_grid_h);
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = wstart +
            static_cast<T>(ix + .5f) * bin_size_w /
                static_cast<T>(roi_bin_grid_w);
        T val = bilinear_interpolate(offset_input, height, width, y, x, index);
        out_sum += val;
      }
    }

    out_sum /= count;
    output[index] = out_sum;
    channel_mapping[index] = c_in;
  }
}

template <typename T>
__device__ void bilinear_interpolate_gradient(
144
145
    int height,
    int width,
146
147
148
149
150
151
152
153
154
155
    T y,
    T x,
    T& w1,
    T& w2,
    T& w3,
    T& w4,
    int& x_low,
    int& x_high,
    int& y_low,
    int& y_high,
156
    int index /* index for debug only*/) {
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
  // deal with cases that inverse elements are out of feature map boundary
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    // empty
    w1 = w2 = w3 = w4 = 0.;
    x_low = x_high = y_low = y_high = -1;
    return;
  }

  if (y <= 0)
    y = 0;
  if (x <= 0)
    x = 0;

  y_low = (int)y;
  x_low = (int)x;

  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = (T)y_low;
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = (T)x_low;
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low;
  T lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;

  // reference in forward
  // T v1 = input[y_low * width + x_low];
  // T v2 = input[y_low * width + x_high];
  // T v3 = input[y_high * width + x_low];
  // T v4 = input[y_high * width + x_high];
  // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);

  w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
}

template <typename T>
202
__global__ void ps_roi_align_backward_kernel_impl(
203
    int nthreads,
204
205
    const T* grad_output,
    const int* channel_mapping,
206
    int num_rois,
207
    const T spatial_scale,
208
209
210
211
212
213
214
    int channels,
    int height,
    int width,
    int pooled_height,
    int pooled_width,
    int sampling_ratio,
    int channels_out,
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
    T* grad_input,
    const T* rois) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, *, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int n = index / pooled_width / pooled_height / channels_out;

    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];

    // Do not using rounding; this implementation detail is critical
    T roi_start_w = offset_rois[1] * spatial_scale - static_cast<T>(0.5);
    T roi_start_h = offset_rois[2] * spatial_scale - static_cast<T>(0.5);
    T roi_end_w = offset_rois[3] * spatial_scale - static_cast<T>(0.5);
    T roi_end_h = offset_rois[4] * spatial_scale - static_cast<T>(0.5);

    // Force too small ROIs to be 1x1
    T roi_width = roi_end_w - roi_start_w;
    T roi_height = roi_end_h - roi_start_h;
    T bin_size_h = roi_height / static_cast<T>(pooled_height);
    T bin_size_w = roi_width / static_cast<T>(pooled_width);

    int c_in = channel_mapping[index];
    T* grad_input_offset =
        grad_input + (roi_batch_ind * channels + c_in) * height * width;

    // Do not using floor/ceil; this implementation detail is critical
    T hstart = static_cast<T>(ph) * bin_size_h + roi_start_h;
    T wstart = static_cast<T>(pw) * bin_size_w + roi_start_w;

    const T grad_output_this_bin = grad_output[index];

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : ceil(roi_height / pooled_height); // e.g., = 2
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
    const T count = roi_bin_grid_h * roi_bin_grid_w;

    for (int iy = 0; iy < roi_bin_grid_h; iy++) {
      const T y = hstart +
          static_cast<T>(iy + .5f) * bin_size_h /
              static_cast<T>(roi_bin_grid_h);
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = wstart +
            static_cast<T>(ix + .5f) * bin_size_w /
                static_cast<T>(roi_bin_grid_w);

        T w1, w2, w3, w4;
        int x_low, x_high, y_low, y_high;

        bilinear_interpolate_gradient(
            height,
            width,
            y,
            x,
            w1,
            w2,
            w3,
            w4,
            x_low,
            x_high,
            y_low,
            y_high,
            index);

        T g1 = grad_output_this_bin * w1 / count;
        T g2 = grad_output_this_bin * w2 / count;
        T g3 = grad_output_this_bin * w3 / count;
        T g4 = grad_output_this_bin * w4 / count;

        if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
          atomicAdd(grad_input_offset + y_low * width + x_low, g1);
          atomicAdd(grad_input_offset + y_low * width + x_high, g2);
          atomicAdd(grad_input_offset + y_high * width + x_low, g3);
          atomicAdd(grad_input_offset + y_high * width + x_high, g4);
        } // if
      } // ix
    } // iy
  }
}

299
std::tuple<at::Tensor, at::Tensor> ps_roi_align_forward_kernel(
300
301
    const at::Tensor& input,
    const at::Tensor& rois,
302
303
304
305
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t sampling_ratio) {
306
  // Check if input tensors are CUDA tensors
vfdev's avatar
vfdev committed
307
308
309
310
  TORCH_CHECK(input.is_cuda(), "input must be a CUDA tensor");
  TORCH_CHECK(rois.is_cuda(), "rois must be a CUDA tensor");
  TORCH_CHECK(
      rois.size(1) == 5, "Tensor rois should have shape as Tensor[K, 5]");
311
312
313

  at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};

314
  at::CheckedFrom c = "ps_roi_align_forward_kernel";
315
316
317
318
319
320
321
322
323
324
  at::checkAllSameGPU(c, {input_t, rois_t});
  at::checkAllSameType(c, {input_t, rois_t});

  at::cuda::CUDAGuard device_guard(input.device());

  auto num_rois = rois.size(0);
  auto channels = input.size(1);
  auto height = input.size(2);
  auto width = input.size(3);

vfdev's avatar
vfdev committed
325
  TORCH_CHECK(
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
      channels % (pooled_height * pooled_width) == 0,
      "input channels must be a multiple of pooling height * pooling width");
  int channels_out = channels / (pooled_height * pooled_width);

  auto output = at::zeros(
      {num_rois, channels_out, pooled_height, pooled_width}, input.options());
  auto channel_mapping =
      at::zeros(output.sizes(), input.options().dtype(at::kInt));

  auto output_size = output.numel();
  if (output_size == 0) {
    AT_CUDA_CHECK(cudaGetLastError());
    return std::make_tuple(output, channel_mapping);
  }

  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

343
  dim3 grid(std::min(
344
      ceil_div(static_cast<int64_t>(output_size), static_cast<int64_t>(512)),
345
      static_cast<int64_t>(4096)));
346
347
  dim3 block(512);

348
  auto input_ = input.contiguous(), rois_ = rois.contiguous();
349
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
350
      input.scalar_type(), "ps_roi_align_forward_kernel", [&] {
351
        ps_roi_align_forward_kernel_impl<scalar_t><<<grid, block, 0, stream>>>(
352
            output_size,
353
            input_.data_ptr<scalar_t>(),
354
355
356
357
358
359
360
            spatial_scale,
            channels,
            height,
            width,
            pooled_height,
            pooled_width,
            sampling_ratio,
361
            rois_.data_ptr<scalar_t>(),
362
            channels_out,
363
364
            output.data_ptr<scalar_t>(),
            channel_mapping.data_ptr<int>());
365
366
367
368
369
370
      });
  AT_CUDA_CHECK(cudaGetLastError());
  cudaDeviceSynchronize();
  return std::make_tuple(output, channel_mapping);
}

371
at::Tensor ps_roi_align_backward_kernel(
372
373
374
    const at::Tensor& grad,
    const at::Tensor& rois,
    const at::Tensor& channel_mapping,
375
376
377
378
379
380
381
382
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t sampling_ratio,
    int64_t batch_size,
    int64_t channels,
    int64_t height,
    int64_t width) {
383
  // Check if input tensors are CUDA tensors
vfdev's avatar
vfdev committed
384
385
386
  TORCH_CHECK(grad.is_cuda(), "grad must be a CUDA tensor");
  TORCH_CHECK(rois.is_cuda(), "rois must be a CUDA tensor");
  TORCH_CHECK(
387
      channel_mapping.is_cuda(), "channel_mapping must be a CUDA tensor");
388
389
390
391

  at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2},
      channel_mapping_t{channel_mapping, "channel_mapping", 3};

392
  at::CheckedFrom c = "ps_roi_align_backward_kernel";
393
394
395
396
397
398
399
400
401
402
403
  at::checkAllSameGPU(c, {grad_t, rois_t, channel_mapping_t});
  at::checkAllSameType(c, {grad_t, rois_t});

  at::cuda::CUDAGuard device_guard(grad.device());

  auto num_rois = rois.size(0);
  auto grad_input =
      at::zeros({batch_size, channels, height, width}, grad.options());

  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

404
  dim3 grid(std::min(
405
      ceil_div(static_cast<int64_t>(grad.numel()), static_cast<int64_t>(512)),
406
      static_cast<int64_t>(4096)));
407
408
409
410
411
412
413
414
415
416
  dim3 block(512);

  // handle possibly empty gradients
  if (grad.numel() == 0) {
    AT_CUDA_CHECK(cudaGetLastError());
    return grad_input;
  }

  int channels_out = channels / (pooled_height * pooled_width);

417
  auto grad_ = grad.contiguous(), rois_ = rois.contiguous();
418
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
419
      grad.scalar_type(), "ps_roi_align_backward_kernel", [&] {
420
        ps_roi_align_backward_kernel_impl<scalar_t><<<grid, block, 0, stream>>>(
421
            grad.numel(),
422
            grad_.data_ptr<scalar_t>(),
423
            channel_mapping.data_ptr<int>(),
424
425
426
427
428
429
430
431
432
            num_rois,
            spatial_scale,
            channels,
            height,
            width,
            pooled_height,
            pooled_width,
            sampling_ratio,
            channels_out,
433
            grad_input.data_ptr<scalar_t>(),
434
            rois_.data_ptr<scalar_t>());
435
436
437
438
      });
  AT_CUDA_CHECK(cudaGetLastError());
  return grad_input;
}
439

440
441
442
443
444
445
446
} // namespace

TORCH_LIBRARY_IMPL(torchvision, CUDA, m) {
  m.impl("ps_roi_align", ps_roi_align_forward_kernel);
  m.impl("_ps_roi_align_backward", ps_roi_align_backward_kernel);
}

447
448
} // namespace ops
} // namespace vision