deform_conv2d_kernel.cpp 33.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
/*!
 ******************* BEGIN Caffe Copyright Notice and Disclaimer
 *****************
 *
 * COPYRIGHT
 *
 * All contributions by the University of California:
 * Copyright (c) 2014-2017 The Regents of the University of California (Regents)
 * All rights reserved.
 *
 * All other contributions:
 * Copyright (c) 2014-2017, the respective contributors
 * All rights reserved.
 *
 * Caffe uses a shared copyright model: each contributor holds copyright over
 * their contributions to Caffe. The project versioning records all such
 * contribution and copyright details. If a contributor wants to further mark
 * their specific copyright on a particular contribution, they should indicate
 * their copyright solely in the commit message of the change when it is
 * committed.
 *
 * LICENSE
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 *AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 *IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
 *FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 *DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 *SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 *OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * CONTRIBUTION AGREEMENT
 *
 * By contributing to the BVLC/caffe repository through pull-request, comment,
 * or otherwise, the contributor releases their content to the
 * license and copyright terms herein.
 *
 ***************** END Caffe Copyright Notice and Disclaimer
 *********************
 *
 * Copyright (c) 2018 Microsoft
 * Licensed under The MIT License [see LICENSE for details]
 * \file modulated_deformable_im2col.cuh
 * \brief Function definitions of converting an image to
 * column matrix based on kernel, padding, dilation, and offset.
 * These functions are mainly used in deformable convolution operators.
 * \ref: https://arxiv.org/abs/1703.06211
 * \author Yuwen Xiong, Haozhi Qi, Jifeng Dai, Xizhou Zhu, Han Hu, Dazhi Cheng
 */

// modified from
// https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda_kernel.cu

// modified from
// https://github.com/open-mmlab/mmdetection/blob/master/mmdet/ops/dcn/src/deform_conv_cuda.cpp

69
70
#include <ATen/ATen.h>
#include <torch/library.h>
71

72
73
74
75
namespace vision {
namespace ops {

namespace {
76
77
78
79

const int kMaxParallelImgs = 32;

template <typename scalar_t>
80
scalar_t bilinear_interpolate(
81
    const scalar_t* in,
82
83
    int height,
    int width,
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    scalar_t h,
    scalar_t w) {
  if (h <= -1 || height <= h || w <= -1 || width <= w) {
    return 0;
  }

  int h_low = floor(h);
  int w_low = floor(w);
  int h_high = h_low + 1;
  int w_high = w_low + 1;

  scalar_t lh = h - h_low;
  scalar_t lw = w - w_low;
  scalar_t hh = 1 - lh, hw = 1 - lw;

  scalar_t v1 = 0;
  if (h_low >= 0 && w_low >= 0)
    v1 = in[h_low * width + w_low];
  scalar_t v2 = 0;
  if (h_low >= 0 && w_high <= width - 1)
    v2 = in[h_low * width + w_high];
  scalar_t v3 = 0;
  if (h_high <= height - 1 && w_low >= 0)
    v3 = in[h_high * width + w_low];
  scalar_t v4 = 0;
  if (h_high <= height - 1 && w_high <= width - 1)
    v4 = in[h_high * width + w_high];

  scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;

  scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
  return val;
}

template <typename scalar_t>
119
void deformable_im2col_kernel(
120
    int n,
121
122
    const scalar_t* input,
    const scalar_t* offset,
123
    const scalar_t* mask,
124
125
126
127
128
129
130
131
    int height,
    int width,
    int weight_h,
    int weight_w,
    int pad_h,
    int pad_w,
    int stride_h,
    int stride_w,
132
133
    int dilation_h,
    int dilation_w,
134
135
136
137
138
    int batch_sz,
    int n_in_channels,
    int n_offset_grps,
    int out_h,
    int out_w,
139
    bool use_mask,
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    scalar_t* columns) {
  for (int index = 0; index != n; ++index) {
    const int out_x = index % out_w;
    const int out_y = (index / out_w) % out_h;
    const int out_b = (index / (out_w * out_h)) % batch_sz;
    const int in_c = index / (out_w * out_h * batch_sz);
    const int out_c = in_c * weight_h * weight_w;

    int c_per_offset_grp = n_in_channels / n_offset_grps;
    const int grp_idx = in_c / c_per_offset_grp;

    auto columns_ptr = columns +
        (out_c * (batch_sz * out_h * out_w) + out_b * (out_h * out_w) +
         out_y * out_w + out_x);

    auto input_ptr = input +
        (out_b * (n_in_channels * height * width) + in_c * (height * width));

    auto offset_ptr = offset +
        (out_b * n_offset_grps + grp_idx) * 2 * weight_h * weight_w * out_h *
            out_w;

162
163
164
165
166
167
    auto mask_ptr = mask;
    if (use_mask) {
      mask_ptr += (out_b * n_offset_grps + grp_idx) * weight_h * weight_w *
          out_h * out_w;
    }

168
169
    for (int i = 0; i < weight_h; ++i) {
      for (int j = 0; j < weight_w; ++j) {
170
171
172
173
174
175
176
177
178
        const int mask_idx = i * weight_w + j;
        const int offset_idx = 2 * mask_idx;

        scalar_t mask_value = 1;
        if (use_mask) {
          mask_value =
              mask_ptr[mask_idx * (out_h * out_w) + out_y * out_w + out_x];
        }

179
180
181
182
        const scalar_t offset_h =
            offset_ptr[offset_idx * (out_h * out_w) + out_y * out_w + out_x];
        const scalar_t offset_w = offset_ptr
            [(offset_idx + 1) * (out_h * out_w) + out_y * out_w + out_x];
183
184
185
186
        const scalar_t y =
            (out_y * stride_h - pad_h) + i * dilation_h + offset_h;
        const scalar_t x =
            (out_x * stride_w - pad_w) + j * dilation_w + offset_w;
187
188
        *columns_ptr =
            mask_value * bilinear_interpolate(input_ptr, height, width, y, x);
189
190
191
192
193
194
        columns_ptr += batch_sz * out_h * out_w;
      }
    }
  }
}

195
void deformable_im2col(
196
197
    const at::Tensor& input,
    const at::Tensor& data_offset,
198
    const at::Tensor& data_mask,
199
200
201
202
203
204
205
206
207
    int n_in_channels,
    int height,
    int width,
    int weight_h,
    int weight_w,
    int pad_h,
    int pad_w,
    int stride_h,
    int stride_w,
208
209
    int dilation_h,
    int dilation_w,
210
211
212
213
    int out_h,
    int out_w,
    int parallel_imgs,
    int deformable_group,
214
    bool use_mask,
215
216
217
218
219
220
221
222
223
    at::Tensor data_col) {
  int num_kernels = n_in_channels * out_h * out_w * parallel_imgs;

  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
      input.scalar_type(), "deformable_im2col", ([&] {
        deformable_im2col_kernel(
            num_kernels,
            input.data_ptr<scalar_t>(),
            data_offset.data_ptr<scalar_t>(),
224
            data_mask.data_ptr<scalar_t>(),
225
226
227
228
229
230
231
232
            height,
            width,
            weight_h,
            weight_w,
            pad_h,
            pad_w,
            stride_h,
            stride_w,
233
234
            dilation_h,
            dilation_w,
235
236
237
238
239
            parallel_imgs,
            n_in_channels,
            deformable_group,
            out_h,
            out_w,
240
            use_mask,
241
242
243
244
            data_col.data_ptr<scalar_t>());
      }));
}

245
int get_greatest_divisor_below_bound(int n, int bound) {
246
247
248
249
250
251
252
253
254
  for (int k = bound; k > 1; --k) {
    if (n % k == 0) {
      return k;
    }
  }
  return 1;
}

template <typename scalar_t>
255
void deformable_col2im_kernel(
256
    int n,
257
258
    const scalar_t* col,
    const scalar_t* offset,
259
    const scalar_t* mask,
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
    int channels,
    int height,
    int width,
    int kernel_h,
    int kernel_w,
    int pad_h,
    int pad_w,
    int stride_h,
    int stride_w,
    int dilation_h,
    int dilation_w,
    int batch_sz,
    int n_offset_grps,
    int out_h,
    int out_w,
275
    bool use_mask,
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    scalar_t* grad_im) {
  for (int index = 0; index != n; ++index) {
    const int out_x = index % out_w;
    const int out_y = (index / out_w) % out_h;
    const int b = (index / (out_w * out_h)) % batch_sz;
    const int j = (index / (out_w * out_h * batch_sz)) % kernel_w;
    const int i = (index / (out_w * out_h * batch_sz * kernel_w)) % kernel_h;
    const int c = index / (out_w * out_h * batch_sz * kernel_w * kernel_h);

    int c_per_offset_grp = channels / n_offset_grps;
    const int offset_grp = c / c_per_offset_grp;

    auto offset_ptr = offset +
        (b * n_offset_grps + offset_grp) * 2 * kernel_h * kernel_w * out_h *
            out_w;
291
292
293
294
295
296
297
298
299
300
301
302
303

    auto mask_ptr = mask;
    if (use_mask) {
      mask_ptr += (b * n_offset_grps + offset_grp) * kernel_h * kernel_w *
          out_h * out_w;
    }

    const int mask_idx = i * kernel_w + j;
    const int offset_idx = 2 * mask_idx;

    const int offset_h_ptr = ((offset_idx)*out_h + out_y) * out_w + out_x;
    const int offset_w_ptr = ((offset_idx + 1) * out_h + out_y) * out_w + out_x;

304
305
    const scalar_t offset_h = offset_ptr[offset_h_ptr];
    const scalar_t offset_w = offset_ptr[offset_w_ptr];
306
307
308
309
310
311

    scalar_t mask_value = 1;
    if (use_mask) {
      mask_value = mask_ptr[(mask_idx * out_h + out_y) * out_w + out_x];
    }

312
313
314
315
316
317
318
319
320
321
322
    const scalar_t y = (out_y * stride_h - pad_h) + i * dilation_h + offset_h;
    const scalar_t x = (out_x * stride_w - pad_w) + j * dilation_w + offset_w;

    for (int dy = -1; dy <= 1; dy++) {
      for (int dx = -1; dx <= 1; dx++) {
        int yp = int(y) + dy;
        int xp = int(x) + dx;
        if (0 <= yp && yp < height && 0 <= xp && xp < width &&
            std::abs(y - yp) < 1 && std::abs(x - xp) < 1) {
          int grad_pos = ((b * channels + c) * height + yp) * width + xp;
          scalar_t weight = (1 - std::abs(y - yp)) * (1 - std::abs(x - xp));
323
          grad_im[grad_pos] += mask_value * weight * col[index];
324
325
326
327
328
329
        }
      }
    }
  }
}

330
void compute_grad_input(
331
332
    const at::Tensor& columns,
    const at::Tensor& offset,
333
    const at::Tensor& mask,
334
335
336
337
338
339
340
341
342
343
344
345
346
    int channels,
    int height,
    int width,
    int weight_h,
    int weight_w,
    int pad_h,
    int pad_w,
    int stride_h,
    int stride_w,
    int dilation_h,
    int dilation_w,
    int parallel_imgs,
    int n_offset_grps,
347
    bool use_mask,
348
349
350
351
352
353
354
355
356
    at::Tensor grad_im) {
  int out_h =
      (height + 2 * pad_h - (dilation_h * (weight_h - 1) + 1)) / stride_h + 1;
  int out_w =
      (width + 2 * pad_w - (dilation_w * (weight_w - 1) + 1)) / stride_w + 1;
  int num_kernels =
      channels * weight_h * weight_w * out_h * out_w * parallel_imgs;

  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
357
      columns.scalar_type(), "compute_grad_input", ([&] {
358
359
360
361
        deformable_col2im_kernel(
            num_kernels,
            columns.data_ptr<scalar_t>(),
            offset.data_ptr<scalar_t>(),
362
            mask.data_ptr<scalar_t>(),
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
            channels,
            height,
            width,
            weight_h,
            weight_w,
            pad_h,
            pad_w,
            stride_h,
            stride_w,
            dilation_h,
            dilation_w,
            parallel_imgs,
            n_offset_grps,
            out_h,
            out_w,
378
            use_mask,
379
380
381
382
383
            grad_im.data_ptr<scalar_t>());
      }));
}

template <typename scalar_t>
384
scalar_t get_coordinate_weight(
385
    const scalar_t* im_data,
386
387
    int height,
    int width,
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
    scalar_t y,
    scalar_t x,
    bool is_y_direction) {
  int y_l = floor(y);
  int x_l = floor(x);
  int y_h = y_l + 1;
  int x_h = x_l + 1;

  bool valid_y_l = 0 <= y_l && y_l < height;
  bool valid_y_h = 0 <= y_h && y_h < height;
  bool valid_x_l = 0 <= x_l && x_l < width;
  bool valid_x_h = 0 <= x_h && x_h < width;

  scalar_t zero = 0;
  scalar_t v_yx = (valid_y_l && valid_x_l) ? im_data[y_l * width + x_l] : zero;
  scalar_t v_yX = (valid_y_l && valid_x_h) ? im_data[y_l * width + x_h] : zero;
  scalar_t v_Yx = (valid_y_h && valid_x_l) ? im_data[y_h * width + x_l] : zero;
  scalar_t v_YX = (valid_y_h && valid_x_h) ? im_data[y_h * width + x_h] : zero;

  if (is_y_direction) {
    scalar_t dx = x - x_l;
    return dx * (v_YX - v_yX) + (1 - dx) * (v_Yx - v_yx);
  } else {
    scalar_t dy = y - y_l;
    return dy * (v_YX - v_Yx) + (1 - dy) * (v_yX - v_yx);
  }
}

template <typename scalar_t>
417
void deformable_col2im_coord_kernel(
418
    int n,
419
420
421
    const scalar_t* col,
    const scalar_t* im,
    const scalar_t* offset,
422
    const scalar_t* mask,
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
    int channels,
    int height,
    int width,
    int weight_h,
    int weight_w,
    int pad_h,
    int pad_w,
    int stride_h,
    int stride_w,
    int dilation_h,
    int dilation_w,
    int batch_sz,
    int offset_channels,
    int n_offset_grps,
    int out_h,
    int out_w,
439
440
441
    bool use_mask,
    scalar_t* grad_offset,
    scalar_t* grad_mask) {
442
  for (int index = 0; index != n; ++index) {
443
444
445
    scalar_t grad_offset_val = 0;
    scalar_t grad_mask_val = 0;

446
447
    int w = index % out_w;
    int h = (index / out_w) % out_h;
448
449
    int w_w = (index / (out_w * out_h * 2)) % weight_w;
    int w_h = (index / (out_w * out_h * 2 * weight_w)) % weight_h;
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
    int c = (index / (out_w * out_h)) % offset_channels;
    int b = index / (out_w * out_h * offset_channels);

    const int offset_grp = c / (2 * weight_h * weight_w);
    const int col_step = weight_h * weight_w;

    int c_per_offset_grp = channels / n_offset_grps;

    auto col_ptr = col +
        offset_grp * c_per_offset_grp * weight_h * weight_w * batch_sz * out_w *
            out_h;
    auto im_ptr = im +
        (b * n_offset_grps + offset_grp) * c_per_offset_grp * height * width;
    auto offset_ptr = offset +
        (b * n_offset_grps + offset_grp) * 2 * weight_h * weight_w * out_h *
            out_w;

467
468
469
470
471
472
    auto mask_ptr = mask;
    if (use_mask) {
      mask_ptr += (b * n_offset_grps + offset_grp) * weight_h * weight_w *
          out_h * out_w;
    }

473
    const int offset_c = c - offset_grp * 2 * weight_h * weight_w;
474
    const bool is_y_direction = offset_c % 2 == 0;
475
476
477
478
479
480
481
482
483
484

    const int c_bound = c_per_offset_grp * weight_h * weight_w;
    for (int col_c = (offset_c / 2); col_c < c_bound; col_c += col_step) {
      const int col_pos = (((col_c * batch_sz + b) * out_h) + h) * out_w + w;

      int out_x = col_pos % out_w;
      int out_y = (col_pos / out_w) % out_h;
      int j = (col_pos / (out_w * out_h * batch_sz)) % weight_w;
      int i = (col_pos / (out_w * out_h * batch_sz * weight_w)) % weight_h;

485
486
      const int mask_idx = i * weight_w + j;

487
      const int offset_h_idx =
488
          (((2 * mask_idx) * out_h + out_y) * out_w + out_x);
489
      const int offset_w_idx =
490
          (((2 * mask_idx + 1) * out_h + out_y) * out_w + out_x);
491
492
493
      const scalar_t offset_h = offset_ptr[offset_h_idx];
      const scalar_t offset_w = offset_ptr[offset_w_idx];

494
495
496
497
498
      scalar_t mask_value = 1;
      if (use_mask) {
        mask_value = mask_ptr[(mask_idx * out_h + out_y) * out_w + out_x];
      }

499
500
501
502
503
      scalar_t y = (out_y * stride_h - pad_h) + i * dilation_h + offset_h;
      scalar_t x = (out_x * stride_w - pad_w) + j * dilation_w + offset_w;

      const scalar_t weight =
          get_coordinate_weight(im_ptr, height, width, y, x, is_y_direction);
504
505
506
507
508
509
510
      grad_offset_val += mask_value * weight * col_ptr[col_pos];

      if (use_mask && is_y_direction) {
        grad_mask_val += col_ptr[col_pos] *
            bilinear_interpolate(im_ptr, height, width, y, x);
      }

511
512
513
      im_ptr += height * width;
    }

514
515
516
517
518
519
520
521
522
523
524
525
    grad_offset[index] = grad_offset_val;

    if (use_mask && is_y_direction) {
      const int idx =
          ((((b * n_offset_grps + offset_grp) * weight_h + w_h) * weight_w +
            w_w) *
               out_h +
           h) *
              out_w +
          w;
      grad_mask[idx] = grad_mask_val;
    }
526
527
528
  }
}

529
void compute_grad_offset_and_mask(
530
531
532
    const at::Tensor& columns,
    const at::Tensor& input,
    const at::Tensor& offset,
533
    const at::Tensor& mask,
534
535
536
537
538
539
540
541
542
543
544
545
546
    int channels,
    int height,
    int width,
    int weight_h,
    int weight_w,
    int pad_h,
    int pad_w,
    int stride_h,
    int stride_w,
    int dilation_h,
    int dilation_w,
    int parallel_imgs,
    int n_offset_grps,
547
548
549
    bool use_mask,
    at::Tensor grad_offset,
    at::Tensor grad_mask) {
550
551
552
553
554
555
556
557
  int out_h =
      (height + 2 * pad_h - (dilation_h * (weight_h - 1) + 1)) / stride_h + 1;
  int out_w =
      (width + 2 * pad_w - (dilation_w * (weight_w - 1) + 1)) / stride_w + 1;
  int num_kernels =
      out_h * out_w * 2 * weight_h * weight_w * n_offset_grps * parallel_imgs;

  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
558
      columns.scalar_type(), "compute_grad_offset_and_mask", ([&] {
559
560
561
562
563
        deformable_col2im_coord_kernel(
            num_kernels,
            columns.data_ptr<scalar_t>(),
            input.data_ptr<scalar_t>(),
            offset.data_ptr<scalar_t>(),
564
            mask.data_ptr<scalar_t>(),
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
            channels,
            height,
            width,
            weight_h,
            weight_w,
            pad_h,
            pad_w,
            stride_h,
            stride_w,
            dilation_h,
            dilation_w,
            parallel_imgs,
            2 * weight_h * weight_w * n_offset_grps,
            n_offset_grps,
            out_h,
            out_w,
581
582
583
            use_mask,
            grad_offset.data_ptr<scalar_t>(),
            grad_mask.data_ptr<scalar_t>());
584
585
586
      }));
}

587
std::tuple<at::Tensor, at::Tensor, at::Tensor> backward_gradient_inputs(
588
589
590
    at::Tensor input,
    at::Tensor weight,
    at::Tensor offset,
591
    at::Tensor mask,
592
    at::Tensor grad_out,
593
594
595
596
    int stride_h,
    int stride_w,
    int pad_h,
    int pad_w,
597
598
    int dilation_h,
    int dilation_w,
599
600
    int n_weight_grps,
    int n_offset_grps,
601
602
    int n_parallel_imgs,
    bool use_mask) {
603
604
605
606
607
608
609
610
611
612
613
  int batch_sz = input.size(0);
  int n_in_channels = input.size(1);
  int in_h = input.size(2);
  int in_w = input.size(3);

  n_parallel_imgs = std::min(batch_sz, n_parallel_imgs);

  long n_out_channels = weight.size(0);
  int weight_h = weight.size(2);
  int weight_w = weight.size(3);

614
615
616
617
  long out_h =
      (in_h + 2 * pad_h - (dilation_h * (weight_h - 1) + 1)) / stride_h + 1;
  long out_w =
      (in_w + 2 * pad_w - (dilation_w * (weight_w - 1) + 1)) / stride_w + 1;
618
619
620

  auto grad_input = at::zeros_like(input);
  auto grad_offset = at::zeros_like(offset);
621
622
  auto grad_mask = at::zeros_like(mask);

623
  if (batch_sz == 0) {
624
    return std::make_tuple(grad_input, grad_offset, grad_mask);
625
  }
626

627
  auto columns = at::empty(
628
629
630
631
      {n_in_channels * weight_w * weight_h, n_parallel_imgs * out_h * out_w},
      input.options());

  // Separate into blocks
632
  grad_input = grad_input.reshape(
633
      {batch_sz / n_parallel_imgs, n_parallel_imgs, n_in_channels, in_h, in_w});
634
  input = input.reshape(
635
      {batch_sz / n_parallel_imgs, n_parallel_imgs, n_in_channels, in_h, in_w});
636

637
638
639
640
641
642
643
644
645
646
647
  grad_offset = grad_offset.reshape({batch_sz / n_parallel_imgs,
                                     n_parallel_imgs,
                                     n_offset_grps * 2 * weight_h * weight_w,
                                     out_h,
                                     out_w});
  offset = offset.reshape({batch_sz / n_parallel_imgs,
                           n_parallel_imgs,
                           n_offset_grps * 2 * weight_h * weight_w,
                           out_h,
                           out_w});

648
649
650
651
652
653
654
655
656
657
658
659
660
  if (use_mask) {
    grad_mask = grad_mask.reshape({batch_sz / n_parallel_imgs,
                                   n_parallel_imgs,
                                   n_offset_grps * weight_h * weight_w,
                                   out_h,
                                   out_w});
    mask = mask.reshape({batch_sz / n_parallel_imgs,
                         n_parallel_imgs,
                         n_offset_grps * weight_h * weight_w,
                         out_h,
                         out_w});
  }

661
662
663
664
665
666
667
668
  grad_out = grad_out
                 .reshape({batch_sz / n_parallel_imgs,
                           n_parallel_imgs,
                           n_weight_grps,
                           n_out_channels / n_weight_grps,
                           out_h,
                           out_w})
                 .permute({0, 2, 3, 1, 4, 5});
669
670
671
672
673
674
675
676
677

  weight = weight.reshape({n_weight_grps,
                           weight.size(0) / n_weight_grps,
                           weight.size(1),
                           weight.size(2),
                           weight.size(3)});

  columns = columns.view(
      {n_weight_grps, columns.size(0) / n_weight_grps, columns.size(1)});
Francisco Massa's avatar
Francisco Massa committed
678

679
  for (int elt = 0; elt < batch_sz / n_parallel_imgs; elt++) {
680
    columns.zero_();
681
682
683
684
685
686
    // Separate into weight groups
    for (int g = 0; g < n_weight_grps; g++) {
      columns[g] = columns[g].addmm_(
          weight[g].flatten(1).transpose(0, 1), grad_out[elt][g].flatten(1));
    }

687
    compute_grad_offset_and_mask(
688
689
690
        columns,
        input[elt],
        offset[elt],
691
        mask[elt],
692
693
694
695
696
697
698
699
700
        n_in_channels,
        in_h,
        in_w,
        weight_h,
        weight_w,
        pad_h,
        pad_w,
        stride_h,
        stride_w,
701
702
        dilation_h,
        dilation_w,
703
704
        n_parallel_imgs,
        n_offset_grps,
705
706
707
        use_mask,
        grad_offset[elt],
        grad_mask[elt]);
708
709
710
711

    compute_grad_input(
        columns,
        offset[elt],
712
        mask[elt],
713
714
715
716
717
718
719
720
721
        n_in_channels,
        in_h,
        in_w,
        weight_h,
        weight_w,
        pad_h,
        pad_w,
        stride_h,
        stride_w,
722
723
        dilation_h,
        dilation_w,
724
725
        n_parallel_imgs,
        n_offset_grps,
726
        use_mask,
727
728
729
730
731
732
733
        grad_input[elt]);
  }

  grad_input = grad_input.view({batch_sz, n_in_channels, in_h, in_w});
  grad_offset = grad_offset.view(
      {batch_sz, n_offset_grps * 2 * weight_h * weight_w, out_h, out_w});

734
735
736
737
738
739
  if (use_mask) {
    grad_mask = grad_mask.view(
        {batch_sz, n_offset_grps * weight_h * weight_w, out_h, out_w});
  }

  return std::make_tuple(grad_input, grad_offset, grad_mask);
740
741
}

742
at::Tensor backward_gradient_parameters(
743
    at::Tensor input,
744
    const at::Tensor& weight,
745
    at::Tensor offset,
746
    at::Tensor mask,
747
    const at::Tensor& grad_out,
748
749
750
751
    int stride_h,
    int stride_w,
    int pad_h,
    int pad_w,
752
753
    int dilation_h,
    int dilation_w,
754
755
    int n_weight_grps,
    int n_offset_grps,
756
757
    int n_parallel_imgs,
    bool use_mask) {
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
  int batch_sz = input.size(0);
  int n_in_channels = input.size(1);
  int in_h = input.size(2);
  int in_w = input.size(3);

  n_parallel_imgs = std::min(batch_sz, n_parallel_imgs);

  long n_out_channels = weight.size(0);
  int weight_h = weight.size(2);
  int weight_w = weight.size(3);

  long out_h = grad_out.size(2);
  long out_w = grad_out.size(3);

  auto grad_weight = at::zeros_like(weight);
773
774
775
  if (batch_sz == 0) {
    return grad_weight;
  }
776

777
778
779
780
781
782
783
784
785
  at::Tensor grad_out_buf = grad_out
                                .reshape({batch_sz / n_parallel_imgs,
                                          n_parallel_imgs,
                                          n_weight_grps,
                                          n_out_channels / n_weight_grps,
                                          out_h,
                                          out_w})
                                .permute({0, 2, 3, 1, 4, 5})
                                .contiguous();
786
787

  input = input.reshape(
788
      {batch_sz / n_parallel_imgs, n_parallel_imgs, n_in_channels, in_h, in_w});
789

790
791
792
793
794
  offset = offset.reshape({batch_sz / n_parallel_imgs,
                           n_parallel_imgs,
                           n_offset_grps * 2 * weight_h * weight_w,
                           out_h,
                           out_w});
795

796
797
798
799
800
801
802
803
  if (use_mask) {
    mask = mask.reshape({batch_sz / n_parallel_imgs,
                         n_parallel_imgs,
                         n_offset_grps * weight_h * weight_w,
                         out_h,
                         out_w});
  }

804
805
806
807
808
  grad_weight = grad_weight.view({n_weight_grps,
                                  grad_weight.size(0) / n_weight_grps,
                                  grad_weight.size(1),
                                  grad_weight.size(2),
                                  grad_weight.size(3)});
809
810
811
812
813
814
815

  auto columns = at::empty(
      {n_weight_grps,
       n_in_channels * weight_w * weight_h / n_weight_grps,
       n_parallel_imgs * out_h * out_w},
      input.options());

816
817
818
819
  for (int elt = 0; elt < batch_sz / n_parallel_imgs; elt++) {
    deformable_im2col(
        input[elt],
        offset[elt],
820
        mask[elt],
821
822
823
824
825
826
827
828
829
        n_in_channels,
        in_h,
        in_w,
        weight_h,
        weight_w,
        pad_h,
        pad_w,
        stride_h,
        stride_w,
830
831
        dilation_h,
        dilation_w,
832
833
834
835
        out_h,
        out_w,
        n_parallel_imgs,
        n_offset_grps,
836
        use_mask,
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
        columns);

    for (int g = 0; g < n_weight_grps; g++) {
      grad_weight[g] =
          grad_weight[g]
              .flatten(1)
              .addmm_(
                  grad_out_buf[elt][g].flatten(1), columns[g].transpose(1, 0))
              .view_as(grad_weight[g]);
    }
  }

  grad_weight = grad_weight.view({grad_weight.size(0) * grad_weight.size(1),
                                  grad_weight.size(2),
                                  grad_weight.size(3),
                                  grad_weight.size(4)});
  return grad_weight;
}

856
at::Tensor deform_conv2d_forward_kernel(
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
    const at::Tensor& input,
    const at::Tensor& weight,
    const at::Tensor& offset,
    const at::Tensor& mask,
    const at::Tensor& bias,
    int64_t stride_h,
    int64_t stride_w,
    int64_t pad_h,
    int64_t pad_w,
    int64_t dilation_h,
    int64_t dilation_w,
    int64_t n_weight_grps,
    int64_t n_offset_grps,
    bool use_mask) {
  at::Tensor input_c = input.contiguous();
  at::Tensor offset_c = offset.contiguous();
  at::Tensor weight_c = weight.contiguous();
  at::Tensor mask_c = mask.contiguous();
  at::Tensor bias_c = bias.contiguous();

  TORCH_CHECK(input_c.ndimension() == 4);
  TORCH_CHECK(offset_c.ndimension() == 4);
  TORCH_CHECK(!use_mask || mask_c.ndimension() == 4);
  TORCH_CHECK(weight_c.ndimension() == 4);
  TORCH_CHECK(input_c.device().is_cpu(), "input must be a CPU tensor");

  int batch_sz = input_c.size(0);
  int n_in_channels = input_c.size(1);
  int in_h = input_c.size(2);
  int in_w = input_c.size(3);

  int n_parallel_imgs =
      get_greatest_divisor_below_bound(batch_sz, kMaxParallelImgs);

  // Unpack shapes and args
  int out_channels = weight_c.size(0);
  int weight_h = weight_c.size(2);
  int weight_w = weight_c.size(3);

  int ker_h = dilation_h * (weight_h - 1) + 1;
  int ker_w = dilation_w * (weight_w - 1) + 1;
  int out_h = ((in_h + 2 * pad_h - ker_h) / stride_h) + 1;
  int out_w = ((in_w + 2 * pad_w - ker_w) / stride_w) + 1;

  TORCH_CHECK(
      weight_h > 0 && weight_w > 0,
      "weight_h: ",
      weight_h,
      " weight_w: ",
      weight_w);
  TORCH_CHECK(
      stride_h > 0 && stride_w > 0,
      "stride_h: ",
      stride_h,
      " stride_w: ",
      stride_w);
  TORCH_CHECK(pad_h >= 0 && pad_w >= 0, "pad_h: ", pad_h, " pad_w: ", pad_w);
  TORCH_CHECK(
      dilation_h > 0 && dilation_w > 0,
      "dilation_h: ",
      dilation_h,
      " dilation_w: ",
      dilation_w);

  TORCH_CHECK(weight_c.size(1) * n_weight_grps == input_c.size(1));
  TORCH_CHECK(weight_c.size(0) % n_weight_grps == 0);
  TORCH_CHECK(
      (offset_c.size(1) == n_offset_grps * 2 * weight_h * weight_w),
      "offset.shape[1] is not valid: got: ",
      offset_c.size(1),
      " expected: ",
      n_offset_grps * 2 * weight_h * weight_w);
  TORCH_CHECK(
      (!use_mask || mask_c.size(1) == n_offset_grps * weight_h * weight_w),
      "mask.shape[1] is not valid: got: ",
      mask_c.size(1),
      " expected: ",
      n_offset_grps * weight_h * weight_w);
  TORCH_CHECK(input_c.size(1) % n_offset_grps == 0);

  TORCH_CHECK(
      (offset_c.size(0) == input_c.size(0)), "invalid batch size of offset");
  TORCH_CHECK(
      (offset_c.size(2) == out_h && offset_c.size(3) == out_w),
      "offset output dims: (",
      offset_c.size(2),
      ", ",
      offset_c.size(3),
      ") - ",
      "computed output dims: (",
      out_h,
      ", ",
      out_w,
      ")");
  TORCH_CHECK(
      (mask_c.size(0) == input_c.size(0)), "invalid batch size of mask");
  TORCH_CHECK(
      (!use_mask || (mask_c.size(2) == out_h && mask_c.size(3) == out_w)),
      "offset output dims: (",
      mask_c.size(2),
      ", ",
      mask_c.size(3),
      ") - ",
      "computed output dims: (",
      out_h,
      ", ",
      out_w,
      ")");
  TORCH_CHECK(
      out_h > 0 && out_w > 0,
      "Calculated output size too small - out_h: ",
      out_h,
      " out_w: ",
      out_w);

  auto out =
      at::zeros({batch_sz, out_channels, out_h, out_w}, input_c.options());
  if (batch_sz == 0) {
    return out;
  }

  // Separate batches into blocks
  out = out.view({batch_sz / n_parallel_imgs,
                  n_parallel_imgs,
                  out_channels,
                  out_h,
                  out_w});
  input_c = input_c.view(
      {batch_sz / n_parallel_imgs, n_parallel_imgs, n_in_channels, in_h, in_w});

  offset_c = offset_c.view({batch_sz / n_parallel_imgs,
                            n_parallel_imgs,
                            n_offset_grps * 2 * weight_h * weight_w,
                            out_h,
                            out_w});

  if (use_mask) {
    mask_c = mask_c.view({batch_sz / n_parallel_imgs,
                          n_parallel_imgs,
                          n_offset_grps * weight_h * weight_w,
                          out_h,
                          out_w});
  }

  at::Tensor out_buf = at::zeros(
      {batch_sz / n_parallel_imgs,
       out_channels,
       n_parallel_imgs * out_h,
       out_w},
      out.options());

  // Separate channels into convolution groups
  out_buf = out_buf.view({out_buf.size(0),
                          n_weight_grps,
                          out_buf.size(1) / n_weight_grps,
                          out_buf.size(2),
                          out_buf.size(3)});
  weight_c = weight_c.view({n_weight_grps,
                            weight_c.size(0) / n_weight_grps,
                            weight_c.size(1),
                            weight_c.size(2),
                            weight_c.size(3)});

  // Sample points and perform convolution
  auto columns = at::zeros(
      {n_in_channels * weight_h * weight_w, n_parallel_imgs * out_h * out_w},
      input_c.options());
  for (int b = 0; b < batch_sz / n_parallel_imgs; b++) {
    deformable_im2col(
        input_c[b],
        offset_c[b],
        mask_c[b],
        n_in_channels,
        in_h,
        in_w,
        weight_h,
        weight_w,
        pad_h,
        pad_w,
        stride_h,
        stride_w,
        dilation_h,
        dilation_w,
        out_h,
        out_w,
        n_parallel_imgs,
        n_offset_grps,
        use_mask,
        columns);

    columns = columns.view(
        {n_weight_grps, columns.size(0) / n_weight_grps, columns.size(1)});
    for (int g = 0; g < n_weight_grps; g++) {
      out_buf[b][g] = out_buf[b][g]
                          .flatten(1)
                          .addmm_(weight_c[g].flatten(1), columns[g])
                          .view_as(out_buf[b][g]);
    }
    columns =
        columns.view({columns.size(0) * columns.size(1), columns.size(2)});
  }

  out_buf = out_buf.view({batch_sz / n_parallel_imgs,
                          out_channels,
                          n_parallel_imgs,
                          out_h,
                          out_w});
  out_buf.transpose_(1, 2);
  out.copy_(out_buf);
  out = out.view({batch_sz, out_channels, out_h, out_w});

  return out + bias_c.view({1, out_channels, 1, 1});
}

1071
std::tuple<at::Tensor, at::Tensor, at::Tensor, at::Tensor, at::Tensor>
1072
deform_conv2d_backward_kernel(
1073
1074
1075
1076
1077
1078
    const at::Tensor& grad_out,
    const at::Tensor& input,
    const at::Tensor& weight,
    const at::Tensor& offset,
    const at::Tensor& mask,
    const at::Tensor& bias,
1079
1080
1081
1082
    int64_t stride_h,
    int64_t stride_w,
    int64_t pad_h,
    int64_t pad_w,
1083
1084
    int64_t dilation_h,
    int64_t dilation_w,
1085
    int64_t n_weight_grps,
1086
1087
    int64_t n_offset_grps,
    bool use_mask) {
1088
1089
1090
1091
1092
1093
1094
1095
  at::Tensor grad_out_c = grad_out.contiguous();
  at::Tensor input_c = input.contiguous();
  at::Tensor weight_c = weight.contiguous();
  at::Tensor offset_c = offset.contiguous();
  at::Tensor mask_c = mask.contiguous();
  at::Tensor bias_c = bias.contiguous();

  const int batch_sz = input_c.size(0);
1096
1097
1098
  const int n_parallel_imgs =
      get_greatest_divisor_below_bound(batch_sz, kMaxParallelImgs);

1099
1100
1101
1102
1103
1104
  auto grad_input_and_offset_and_mask = backward_gradient_inputs(
      input_c,
      weight_c,
      offset_c,
      mask_c,
      grad_out_c,
1105
1106
1107
1108
      stride_h,
      stride_w,
      pad_h,
      pad_w,
1109
1110
      dilation_h,
      dilation_w,
1111
1112
      n_weight_grps,
      n_offset_grps,
1113
1114
      n_parallel_imgs,
      use_mask);
1115

1116
1117
1118
  auto grad_input = std::get<0>(grad_input_and_offset_and_mask);
  auto grad_offset = std::get<1>(grad_input_and_offset_and_mask);
  auto grad_mask = std::get<2>(grad_input_and_offset_and_mask);
1119

1120
1121
1122
1123
1124
1125
  auto grad_weight = backward_gradient_parameters(
      input_c,
      weight_c,
      offset_c,
      mask_c,
      grad_out_c,
1126
1127
1128
1129
      stride_h,
      stride_w,
      pad_h,
      pad_w,
1130
1131
      dilation_h,
      dilation_w,
1132
1133
      n_weight_grps,
      n_offset_grps,
1134
1135
      n_parallel_imgs,
      use_mask);
1136

1137
  auto grad_bias = at::ones_like(bias_c) * grad_out_c.sum({0, 2, 3});
1138

1139
1140
  return std::make_tuple(
      grad_input, grad_weight, grad_offset, grad_mask, grad_bias);
1141
}
1142

1143
1144
1145
1146
1147
1148
1149
} // namespace

TORCH_LIBRARY_IMPL(torchvision, CPU, m) {
  m.impl("deform_conv2d", deform_conv2d_forward_kernel);
  m.impl("_deform_conv2d_backward", deform_conv2d_backward_kernel);
}

1150
1151
} // namespace ops
} // namespace vision