train.py 15.4 KB
Newer Older
1
2
import argparse
import warnings
3
from math import ceil
4
5
6
from pathlib import Path

import torch
7
import torchvision.models.optical_flow
8
9
10
import utils
from presets import OpticalFlowPresetTrain, OpticalFlowPresetEval
from torchvision.datasets import KittiFlow, FlyingChairs, FlyingThings3D, Sintel, HD1K
11
12

try:
13
    from torchvision import prototype
14
except ImportError:
15
    prototype = None
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62


def get_train_dataset(stage, dataset_root):
    if stage == "chairs":
        transforms = OpticalFlowPresetTrain(crop_size=(368, 496), min_scale=0.1, max_scale=1.0, do_flip=True)
        return FlyingChairs(root=dataset_root, split="train", transforms=transforms)
    elif stage == "things":
        transforms = OpticalFlowPresetTrain(crop_size=(400, 720), min_scale=-0.4, max_scale=0.8, do_flip=True)
        return FlyingThings3D(root=dataset_root, split="train", pass_name="both", transforms=transforms)
    elif stage == "sintel_SKH":  # S + K + H as from paper
        crop_size = (368, 768)
        transforms = OpticalFlowPresetTrain(crop_size=crop_size, min_scale=-0.2, max_scale=0.6, do_flip=True)

        things_clean = FlyingThings3D(root=dataset_root, split="train", pass_name="clean", transforms=transforms)
        sintel = Sintel(root=dataset_root, split="train", pass_name="both", transforms=transforms)

        kitti_transforms = OpticalFlowPresetTrain(crop_size=crop_size, min_scale=-0.3, max_scale=0.5, do_flip=True)
        kitti = KittiFlow(root=dataset_root, split="train", transforms=kitti_transforms)

        hd1k_transforms = OpticalFlowPresetTrain(crop_size=crop_size, min_scale=-0.5, max_scale=0.2, do_flip=True)
        hd1k = HD1K(root=dataset_root, split="train", transforms=hd1k_transforms)

        # As future improvement, we could probably be using a distributed sampler here
        # The distribution is S(.71), T(.135), K(.135), H(.02)
        return 100 * sintel + 200 * kitti + 5 * hd1k + things_clean
    elif stage == "kitti":
        transforms = OpticalFlowPresetTrain(
            # resize and crop params
            crop_size=(288, 960),
            min_scale=-0.2,
            max_scale=0.4,
            stretch_prob=0,
            # flip params
            do_flip=False,
            # jitter params
            brightness=0.3,
            contrast=0.3,
            saturation=0.3,
            hue=0.3 / 3.14,
            asymmetric_jitter_prob=0,
        )
        return KittiFlow(root=dataset_root, split="train", transforms=transforms)
    else:
        raise ValueError(f"Unknown stage {stage}")


@torch.no_grad()
63
def _evaluate(model, args, val_dataset, *, padder_mode, num_flow_updates=None, batch_size=None, header=None):
64
65
66
67
68
    """Helper function to compute various metrics (epe, etc.) for a model on a given dataset.

    We process as many samples as possible with ddp, and process the rest on a single worker.
    """
    batch_size = batch_size or args.batch_size
69
    device = torch.device(args.device)
70
71
72

    model.eval()

73
74
75
76
77
    if args.distributed:
        sampler = torch.utils.data.distributed.DistributedSampler(val_dataset, shuffle=False, drop_last=True)
    else:
        sampler = torch.utils.data.SequentialSampler(val_dataset)

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    val_loader = torch.utils.data.DataLoader(
        val_dataset,
        sampler=sampler,
        batch_size=batch_size,
        pin_memory=True,
        num_workers=args.num_workers,
    )

    num_flow_updates = num_flow_updates or args.num_flow_updates

    def inner_loop(blob):
        if blob[0].dim() == 3:
            # input is not batched so we add an extra dim for consistency
            blob = [x[None, :, :, :] if x is not None else None for x in blob]

        image1, image2, flow_gt = blob[:3]
        valid_flow_mask = None if len(blob) == 3 else blob[-1]

96
        image1, image2 = image1.to(device), image2.to(device)
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

        padder = utils.InputPadder(image1.shape, mode=padder_mode)
        image1, image2 = padder.pad(image1, image2)

        flow_predictions = model(image1, image2, num_flow_updates=num_flow_updates)
        flow_pred = flow_predictions[-1]
        flow_pred = padder.unpad(flow_pred).cpu()

        metrics, num_pixels_tot = utils.compute_metrics(flow_pred, flow_gt, valid_flow_mask)

        # We compute per-pixel epe (epe) and per-image epe (called f1-epe in RAFT paper).
        # per-pixel epe: average epe of all pixels of all images
        # per-image epe: average epe on each image independently, then average over images
        for name in ("epe", "1px", "3px", "5px", "f1"):  # f1 is called f1-all in paper
            logger.meters[name].update(metrics[name], n=num_pixels_tot)
        logger.meters["per_image_epe"].update(metrics["epe"], n=batch_size)

    logger = utils.MetricLogger()
    for meter_name in ("epe", "1px", "3px", "5px", "per_image_epe", "f1"):
        logger.add_meter(meter_name, fmt="{global_avg:.4f}")

    num_processed_samples = 0
    for blob in logger.log_every(val_loader, header=header, print_freq=None):
        inner_loop(blob)
        num_processed_samples += blob[0].shape[0]  # batch size

123
124
125
126
127
128
129
130
131
    if args.distributed:
        num_processed_samples = utils.reduce_across_processes(num_processed_samples)
        print(
            f"Batch-processed {num_processed_samples} / {len(val_dataset)} samples. "
            "Going to process the remaining samples individually, if any."
        )
        if args.rank == 0:  # we only need to process the rest on a single worker
            for i in range(num_processed_samples, len(val_dataset)):
                inner_loop(val_dataset[i])
132

133
        logger.synchronize_between_processes()
134
135
136
137

    print(header, logger)


138
def evaluate(model, args):
139
    val_datasets = args.val_dataset or []
140

141
142
143
144
145
    if args.prototype:
        if args.weights:
            weights = prototype.models.get_weight(args.weights)
            preprocessing = weights.transforms()
        else:
146
            preprocessing = prototype.transforms.OpticalFlowEval()
147
148
149
    else:
        preprocessing = OpticalFlowPresetEval()

150
151
152
153
    for name in val_datasets:
        if name == "kitti":
            # Kitti has different image sizes so we need to individually pad them, we can't batch.
            # see comment in InputPadder
154
            if args.batch_size != 1 and (not args.distributed or args.rank == 0):
155
156
157
158
                warnings.warn(
                    f"Batch-size={args.batch_size} was passed. For technical reasons, evaluating on Kitti can only be done with a batch-size of 1."
                )

159
            val_dataset = KittiFlow(root=args.dataset_root, split="train", transforms=preprocessing)
160
            _evaluate(
161
162
163
164
165
                model, args, val_dataset, num_flow_updates=24, padder_mode="kitti", header="Kitti val", batch_size=1
            )
        elif name == "sintel":
            for pass_name in ("clean", "final"):
                val_dataset = Sintel(
166
                    root=args.dataset_root, split="train", pass_name=pass_name, transforms=preprocessing
167
                )
168
                _evaluate(
169
170
171
172
173
174
175
176
177
178
179
                    model,
                    args,
                    val_dataset,
                    num_flow_updates=32,
                    padder_mode="sintel",
                    header=f"Sintel val {pass_name}",
                )
        else:
            warnings.warn(f"Can't validate on {val_dataset}, skipping.")


180
def train_one_epoch(model, optimizer, scheduler, train_loader, logger, args):
181
    device = torch.device(args.device)
182
183
184
185
    for data_blob in logger.log_every(train_loader):

        optimizer.zero_grad()

186
        image1, image2, flow_gt, valid_flow_mask = (x.to(device) for x in data_blob)
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
        flow_predictions = model(image1, image2, num_flow_updates=args.num_flow_updates)

        loss = utils.sequence_loss(flow_predictions, flow_gt, valid_flow_mask, args.gamma)
        metrics, _ = utils.compute_metrics(flow_predictions[-1], flow_gt, valid_flow_mask)

        metrics.pop("f1")
        logger.update(loss=loss, **metrics)

        loss.backward()

        torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1)

        optimizer.step()
        scheduler.step()


def main(args):
204
205
206
207
    if args.prototype and prototype is None:
        raise ImportError("The prototype module couldn't be found. Please install the latest torchvision nightly.")
    if not args.prototype and args.weights:
        raise ValueError("The weights parameter works only in prototype mode. Please pass the --prototype argument.")
208
209
    utils.setup_ddp(args)

210
211
212
213
    if args.distributed and args.device == "cpu":
        raise ValueError("The device must be cuda if we want to run in distributed mode using torchrun")
    device = torch.device(args.device)

214
215
    if args.prototype:
        model = prototype.models.optical_flow.__dict__[args.model](weights=args.weights)
216
217
218
    else:
        model = torchvision.models.optical_flow.__dict__[args.model](pretrained=args.pretrained)

219
220
221
222
223
224
225
    if args.distributed:
        model = model.to(args.local_rank)
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank])
        model_without_ddp = model.module
    else:
        model.to(device)
        model_without_ddp = model
226
227

    if args.resume is not None:
228
229
        checkpoint = torch.load(args.resume, map_location="cpu")
        model_without_ddp.load_state_dict(checkpoint["model"])
230
231
232
233
234

    if args.train_dataset is None:
        # Set deterministic CUDNN algorithms, since they can affect epe a fair bit.
        torch.backends.cudnn.benchmark = False
        torch.backends.cudnn.deterministic = True
235
        evaluate(model, args)
236
237
238
239
        return

    print(f"Parameter Count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
    train_dataset = get_train_dataset(args.train_dataset, args.dataset_root)

    optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.weight_decay, eps=args.adamw_eps)

    scheduler = torch.optim.lr_scheduler.OneCycleLR(
        optimizer=optimizer,
        max_lr=args.lr,
        epochs=args.epochs,
        steps_per_epoch=ceil(len(train_dataset) / (args.world_size * args.batch_size)),
        pct_start=0.05,
        cycle_momentum=False,
        anneal_strategy="linear",
    )

    if args.resume is not None:
        optimizer.load_state_dict(checkpoint["optimizer"])
        scheduler.load_state_dict(checkpoint["scheduler"])
        args.start_epoch = checkpoint["epoch"] + 1
    else:
        args.start_epoch = 0

261
262
263
264
265
266
    torch.backends.cudnn.benchmark = True

    model.train()
    if args.freeze_batch_norm:
        utils.freeze_batch_norm(model.module)

267
268
269
270
    if args.distributed:
        sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, shuffle=True, drop_last=True)
    else:
        sampler = torch.utils.data.RandomSampler(train_dataset)
271
272
273
274
275
276
277
278
279
280
281
282

    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        sampler=sampler,
        batch_size=args.batch_size,
        pin_memory=True,
        num_workers=args.num_workers,
    )

    logger = utils.MetricLogger()

    done = False
283
    for current_epoch in range(args.start_epoch, args.epochs):
284
        print(f"EPOCH {current_epoch}")
285
286
287
        if args.distributed:
            # needed on distributed mode, otherwise the data loading order would be the same for all epochs
            sampler.set_epoch(current_epoch)
288

289
        train_one_epoch(
290
291
292
293
294
295
296
297
298
299
300
            model=model,
            optimizer=optimizer,
            scheduler=scheduler,
            train_loader=train_loader,
            logger=logger,
            args=args,
        )

        # Note: we don't sync the SmoothedValues across processes, so the printed metrics are just those of rank 0
        print(f"Epoch {current_epoch} done. ", logger)

301
302
303
304
305
306
307
308
309
310
        if not args.distributed or args.rank == 0:
            checkpoint = {
                "model": model_without_ddp.state_dict(),
                "optimizer": optimizer.state_dict(),
                "scheduler": scheduler.state_dict(),
                "epoch": current_epoch,
                "args": args,
            }
            torch.save(checkpoint, Path(args.output_dir) / f"{args.name}_{current_epoch}.pth")
            torch.save(checkpoint, Path(args.output_dir) / f"{args.name}.pth")
311
312

        if current_epoch % args.val_freq == 0 or done:
313
            evaluate(model, args)
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
            model.train()
            if args.freeze_batch_norm:
                utils.freeze_batch_norm(model.module)


def get_args_parser(add_help=True):
    parser = argparse.ArgumentParser(add_help=add_help, description="Train or evaluate an optical-flow model.")
    parser.add_argument(
        "--name",
        default="raft",
        type=str,
        help="The name of the experiment - determines the name of the files where weights are saved.",
    )
    parser.add_argument(
        "--output-dir", default="checkpoints", type=str, help="Output dir where checkpoints will be stored."
    )
    parser.add_argument(
        "--resume",
        type=str,
        help="A path to previously saved weights. Used to re-start training from, or evaluate a pre-saved model.",
    )

    parser.add_argument("--num-workers", type=int, default=12, help="Number of workers for the data loading part.")

    parser.add_argument(
        "--train-dataset",
        type=str,
        help="The dataset to use for training. If not passed, only validation is performed (and you probably want to pass --resume).",
    )
    parser.add_argument("--val-dataset", type=str, nargs="+", help="The dataset(s) to use for validation.")
    parser.add_argument("--val-freq", type=int, default=2, help="Validate every X epochs")
345
346
    parser.add_argument("--epochs", type=int, default=20, help="The total number of epochs to train.")
    parser.add_argument("--batch-size", type=int, default=2)
347
348
349
350
351
352
353
354
355

    parser.add_argument("--lr", type=float, default=0.00002, help="Learning rate for AdamW optimizer")
    parser.add_argument("--weight-decay", type=float, default=0.00005, help="Weight decay for AdamW optimizer")
    parser.add_argument("--adamw-eps", type=float, default=1e-8, help="eps value for AdamW optimizer")

    parser.add_argument(
        "--freeze-batch-norm", action="store_true", help="Set BatchNorm modules of the model in eval mode."
    )

356
357
358
359
360
    parser.add_argument(
        "--model", type=str, default="raft_large", help="The name of the model to use - either raft_large or raft_small"
    )
    # TODO: resume, pretrained, and weights should be in an exclusive arg group
    parser.add_argument("--pretrained", action="store_true", help="Whether to use pretrained weights")
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

    parser.add_argument(
        "--num_flow_updates",
        type=int,
        default=12,
        help="number of updates (or 'iters') in the update operator of the model.",
    )

    parser.add_argument("--gamma", type=float, default=0.8, help="exponential weighting for loss. Must be < 1.")

    parser.add_argument("--dist-url", default="env://", help="URL used to set up distributed training")

    parser.add_argument(
        "--dataset-root",
        help="Root folder where the datasets are stored. Will be passed as the 'root' parameter of the datasets.",
        required=True,
    )

379
380
381
382
383
384
385
386
    # Prototype models only
    parser.add_argument(
        "--prototype",
        dest="prototype",
        help="Use prototype model builders instead those from main area",
        action="store_true",
    )
    parser.add_argument("--weights", default=None, type=str, help="the weights enum name to load.")
387
    parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu, Default: cuda)")
388

389
390
391
392
393
394
395
    return parser


if __name__ == "__main__":
    args = get_args_parser().parse_args()
    Path(args.output_dir).mkdir(exist_ok=True)
    main(args)