builtin_dataset_mocks.py 19.8 KB
Newer Older
1
2
import functools
import gzip
Philip Meier's avatar
Philip Meier committed
3
import json
4
5
6
7
8
9
10
11
import lzma
import pathlib
import pickle
import tempfile
from collections import defaultdict
from typing import Any, Dict, Tuple

import numpy as np
Philip Meier's avatar
Philip Meier committed
12
import PIL.Image
13
14
15
16
17
18
import pytest
import torch
from datasets_utils import create_image_folder, make_tar, make_zip
from torch.testing import make_tensor as _make_tensor
from torchdata.datapipes.iter import IterDataPipe
from torchvision.prototype import datasets
19
from torchvision.prototype.datasets._api import DEFAULT_DECODER_MAP, DEFAULT_DECODER
20
from torchvision.prototype.datasets._api import find
Philip Meier's avatar
Philip Meier committed
21
from torchvision.prototype.utils._internal import add_suggestion
22

Philip Meier's avatar
Philip Meier committed
23

24
make_tensor = functools.partial(_make_tensor, device="cpu")
Philip Meier's avatar
Philip Meier committed
25
make_scalar = functools.partial(make_tensor, ())
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

__all__ = ["load"]

DEFAULT_TEST_DECODER = object()


class DatasetMocks:
    def __init__(self):
        self._mock_data_fns = {}
        self._tmp_home = pathlib.Path(tempfile.mkdtemp())
        self._cache = {}

    def register_mock_data_fn(self, mock_data_fn):
        name = mock_data_fn.__name__
        if name not in datasets.list():
            raise pytest.UsageError(
                add_suggestion(
                    f"The name of the mock data function '{name}' has no corresponding dataset.",
                    word=name,
                    possibilities=datasets.list(),
                    close_match_hint=lambda close_match: f"Did you mean to name it '{close_match}'?",
                    alternative_hint=lambda _: "",
                )
            )
        self._mock_data_fns[name] = mock_data_fn
        return mock_data_fn

    def _parse_mock_info(self, mock_info, *, name):
        if mock_info is None:
            raise pytest.UsageError(
                f"The mock data function for dataset '{name}' returned nothing. It needs to at least return an integer "
                f"indicating the number of samples for the current `config`."
            )
        elif isinstance(mock_info, int):
            mock_info = dict(num_samples=mock_info)
        elif not isinstance(mock_info, dict):
            raise pytest.UsageError(
                f"The mock data function for dataset '{name}' returned a {type(mock_info)}. The returned object should "
                f"be a dictionary containing at least the number of samples for the current `config` for the key "
                f"`'num_samples'`. If no additional information is required for specific tests, the number of samples "
                f"can also be returned as an integer."
            )
        elif "num_samples" not in mock_info:
            raise pytest.UsageError(
                f"The dictionary returned by the mock data function for dataset '{name}' must contain a `'num_samples'` "
                f"entry indicating the number of samples for the current `config`."
            )
        return mock_info

    def _get(self, dataset, config):
        name = dataset.info.name
        resources_and_mock_info = self._cache.get((name, config))
        if resources_and_mock_info:
            return resources_and_mock_info

        try:
            fakedata_fn = self._mock_data_fns[name]
        except KeyError:
            raise pytest.UsageError(
                f"No mock data available for dataset '{name}'. "
                f"Did you add a new dataset, but forget to provide mock data for it? "
                f"Did you register the mock data function with `@DatasetMocks.register_mock_data_fn`?"
            )

        root = self._tmp_home / name
        root.mkdir(exist_ok=True)
        mock_info = self._parse_mock_info(fakedata_fn(dataset.info, root, config), name=name)

        mock_resources = []
        for resource in dataset.resources(config):
            path = root / resource.file_name
            if not path.exists() and path.is_file():
                raise pytest.UsageError(
                    f"Dataset '{name}' requires the file {path.name} for {config}, but this file does not exist."
                )

            mock_resources.append(datasets.utils.LocalResource(path))

        self._cache[(name, config)] = mock_resources, mock_info
        return mock_resources, mock_info

    def load(
108
        self, name: str, decoder=DEFAULT_DECODER, split="train", **options: Any
109
110
111
112
113
114
115
    ) -> Tuple[IterDataPipe, Dict[str, Any]]:
        dataset = find(name)
        config = dataset.info.make_config(split=split, **options)
        resources, mock_info = self._get(dataset, config)
        datapipe = dataset._make_datapipe(
            [resource.to_datapipe() for resource in resources],
            config=config,
116
            decoder=DEFAULT_DECODER_MAP.get(dataset.info.type) if decoder is DEFAULT_DECODER else decoder,
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
        )
        return datapipe, mock_info


dataset_mocks = DatasetMocks()
load = dataset_mocks.load


class MNISTFakedata:
    _DTYPES_ID = {
        torch.uint8: 8,
        torch.int8: 9,
        torch.int16: 11,
        torch.int32: 12,
        torch.float32: 13,
        torch.float64: 14,
    }

    @classmethod
    def _magic(cls, dtype, ndim):
        return cls._DTYPES_ID[dtype] * 256 + ndim + 1

    @staticmethod
    def _encode(t):
        return torch.tensor(t, dtype=torch.int32).numpy().tobytes()[::-1]

    @staticmethod
    def _big_endian_dtype(dtype):
        np_dtype = getattr(np, str(dtype).replace("torch.", ""))().dtype
        return np.dtype(f">{np_dtype.kind}{np_dtype.itemsize}")

    @classmethod
    def _create_binary_file(cls, root, filename, *, num_samples, shape, dtype, compressor, low=0, high):
        with compressor(root / filename, "wb") as fh:
            for meta in (cls._magic(dtype, len(shape)), num_samples, *shape):
                fh.write(cls._encode(meta))

            data = make_tensor((num_samples, *shape), dtype=dtype, low=low, high=high)

            fh.write(data.numpy().astype(cls._big_endian_dtype(dtype)).tobytes())

    @classmethod
    def generate(
        cls,
        root,
        *,
        num_categories,
        num_samples=None,
        images_file,
        labels_file,
        image_size=(28, 28),
        image_dtype=torch.uint8,
        label_size=(),
        label_dtype=torch.uint8,
        compressor=None,
    ):
        if num_samples is None:
            num_samples = num_categories
        if compressor is None:
            compressor = gzip.open

        cls._create_binary_file(
            root,
            images_file,
            num_samples=num_samples,
            shape=image_size,
            dtype=image_dtype,
            compressor=compressor,
            high=float("inf"),
        )
        cls._create_binary_file(
            root,
            labels_file,
            num_samples=num_samples,
            shape=label_size,
            dtype=label_dtype,
            compressor=compressor,
            high=num_categories,
        )

        return num_samples


@dataset_mocks.register_mock_data_fn
def mnist(info, root, config):
    train = config.split == "train"
    images_file = f"{'train' if train else 't10k'}-images-idx3-ubyte.gz"
    labels_file = f"{'train' if train else 't10k'}-labels-idx1-ubyte.gz"
    return MNISTFakedata.generate(
        root,
        num_categories=len(info.categories),
        images_file=images_file,
        labels_file=labels_file,
    )


@dataset_mocks.register_mock_data_fn
def fashionmnist(info, root, config):
    train = config.split == "train"
    images_file = f"{'train' if train else 't10k'}-images-idx3-ubyte.gz"
    labels_file = f"{'train' if train else 't10k'}-labels-idx1-ubyte.gz"
    return MNISTFakedata.generate(
        root,
        num_categories=len(info.categories),
        images_file=images_file,
        labels_file=labels_file,
    )


@dataset_mocks.register_mock_data_fn
def kmnist(info, root, config):
    train = config.split == "train"
    images_file = f"{'train' if train else 't10k'}-images-idx3-ubyte.gz"
    labels_file = f"{'train' if train else 't10k'}-labels-idx1-ubyte.gz"
    return MNISTFakedata.generate(
        root,
        num_categories=len(info.categories),
        images_file=images_file,
        labels_file=labels_file,
    )


@dataset_mocks.register_mock_data_fn
def emnist(info, root, config):
    # The image sets that merge some lower case letters in their respective upper case variant, still use dense
    # labels in the data files. Thus, num_categories != len(categories) there.
    num_categories = defaultdict(
        lambda: len(info.categories), **{image_set: 47 for image_set in ("Balanced", "By_Merge")}
    )

    num_samples = {}
    file_names = set()
    for _config in info._configs:
        prefix = f"emnist-{_config.image_set.replace('_', '').lower()}-{_config.split}"
        images_file = f"{prefix}-images-idx3-ubyte.gz"
        labels_file = f"{prefix}-labels-idx1-ubyte.gz"
        file_names.update({images_file, labels_file})
        num_samples[_config.image_set] = MNISTFakedata.generate(
            root,
            num_categories=num_categories[_config.image_set],
            images_file=images_file,
            labels_file=labels_file,
        )

    make_zip(root, "emnist-gzip.zip", *file_names)

    return num_samples[config.image_set]


@dataset_mocks.register_mock_data_fn
def qmnist(info, root, config):
    num_categories = len(info.categories)
    if config.split == "train":
        num_samples = num_samples_gen = num_categories + 2
        prefix = "qmnist-train"
        suffix = ".gz"
        compressor = gzip.open
    elif config.split.startswith("test"):
        # The split 'test50k' is defined as the last 50k images beginning at index 10000. Thus, we need to create more
        # than 10000 images for the dataset to not be empty.
        num_samples = num_samples_gen = 10001
        if config.split == "test10k":
            num_samples = min(num_samples, 10000)
        if config.split == "test50k":
            num_samples -= 10000
        prefix = "qmnist-test"
        suffix = ".gz"
        compressor = gzip.open
    else:  # config.split == "nist"
        num_samples = num_samples_gen = num_categories + 3
        prefix = "xnist"
        suffix = ".xz"
        compressor = lzma.open

    MNISTFakedata.generate(
        root,
        num_categories=num_categories,
        num_samples=num_samples_gen,
        images_file=f"{prefix}-images-idx3-ubyte{suffix}",
        labels_file=f"{prefix}-labels-idx2-int{suffix}",
        label_size=(8,),
        label_dtype=torch.int32,
        compressor=compressor,
    )

    return num_samples


class CIFARFakedata:
    NUM_PIXELS = 32 * 32 * 3

    @classmethod
    def _create_batch_file(cls, root, name, *, num_categories, labels_key, num_samples=1):
        content = {
            "data": make_tensor((num_samples, cls.NUM_PIXELS), dtype=torch.uint8).numpy(),
            labels_key: torch.randint(0, num_categories, size=(num_samples,)).tolist(),
        }
        with open(pathlib.Path(root) / name, "wb") as fh:
            pickle.dump(content, fh)

    @classmethod
    def generate(
        cls,
        root,
        name,
        *,
        folder,
        train_files,
        test_files,
        num_categories,
        labels_key,
    ):
        folder = root / folder
        folder.mkdir()
        files = (*train_files, *test_files)
        for file in files:
            cls._create_batch_file(
                folder,
                file,
                num_categories=num_categories,
                labels_key=labels_key,
            )

        make_tar(root, name, folder, compression="gz")


@dataset_mocks.register_mock_data_fn
def cifar10(info, root, config):
    train_files = [f"data_batch_{idx}" for idx in range(1, 6)]
    test_files = ["test_batch"]

    CIFARFakedata.generate(
        root=root,
        name="cifar-10-python.tar.gz",
        folder=pathlib.Path("cifar-10-batches-py"),
        train_files=train_files,
        test_files=test_files,
        num_categories=10,
        labels_key="labels",
    )

    return len(train_files if config.split == "train" else test_files)


@dataset_mocks.register_mock_data_fn
def cifar100(info, root, config):
    train_files = ["train"]
    test_files = ["test"]

    CIFARFakedata.generate(
        root=root,
        name="cifar-100-python.tar.gz",
        folder=pathlib.Path("cifar-100-python"),
        train_files=train_files,
        test_files=test_files,
        num_categories=100,
        labels_key="fine_labels",
    )

    return len(train_files if config.split == "train" else test_files)


@dataset_mocks.register_mock_data_fn
def caltech101(info, root, config):
    def create_ann_file(root, name):
        import scipy.io

        box_coord = make_tensor((1, 4), dtype=torch.int32, low=0).numpy().astype(np.uint16)
        obj_contour = make_tensor((2, int(torch.randint(3, 6, size=()))), dtype=torch.float64, low=0).numpy()

        scipy.io.savemat(str(pathlib.Path(root) / name), dict(box_coord=box_coord, obj_contour=obj_contour))

    def create_ann_folder(root, name, file_name_fn, num_examples):
        root = pathlib.Path(root) / name
        root.mkdir(parents=True)

        for idx in range(num_examples):
            create_ann_file(root, file_name_fn(idx))

    images_root = root / "101_ObjectCategories"
    anns_root = root / "Annotations"

    ann_category_map = {
        "Faces_2": "Faces",
        "Faces_3": "Faces_easy",
        "Motorbikes_16": "Motorbikes",
        "Airplanes_Side_2": "airplanes",
    }

    num_images_per_category = 2
    for category in info.categories:
        create_image_folder(
            root=images_root,
            name=category,
            file_name_fn=lambda idx: f"image_{idx + 1:04d}.jpg",
            num_examples=num_images_per_category,
        )
        create_ann_folder(
            root=anns_root,
            name=ann_category_map.get(category, category),
            file_name_fn=lambda idx: f"annotation_{idx + 1:04d}.mat",
            num_examples=num_images_per_category,
        )

    (images_root / "BACKGROUND_Goodle").mkdir()
    make_tar(root, f"{images_root.name}.tar.gz", images_root, compression="gz")

    make_tar(root, f"{anns_root.name}.tar", anns_root)

    return num_images_per_category * len(info.categories)


@dataset_mocks.register_mock_data_fn
def caltech256(info, root, config):
    dir = root / "256_ObjectCategories"
    num_images_per_category = 2

    for idx, category in enumerate(info.categories, 1):
        files = create_image_folder(
            dir,
            name=f"{idx:03d}.{category}",
            file_name_fn=lambda image_idx: f"{idx:03d}_{image_idx + 1:04d}.jpg",
            num_examples=num_images_per_category,
        )
        if category == "spider":
            open(files[0].parent / "RENAME2", "w").close()

    make_tar(root, f"{dir.name}.tar", dir)

    return num_images_per_category * len(info.categories)


@dataset_mocks.register_mock_data_fn
def imagenet(info, root, config):
    wnids = tuple(info.extra.wnid_to_category.keys())
    if config.split == "train":
        images_root = root / "ILSVRC2012_img_train"

        num_samples = len(wnids)

        for wnid in wnids:
            files = create_image_folder(
                root=images_root,
                name=wnid,
                file_name_fn=lambda image_idx: f"{wnid}_{image_idx:04d}.JPEG",
                num_examples=1,
            )
            make_tar(images_root, f"{wnid}.tar", files[0].parent)
465
    elif config.split == "val":
466
467
468
469
470
471
472
473
        num_samples = 3
        files = create_image_folder(
            root=root,
            name="ILSVRC2012_img_val",
            file_name_fn=lambda image_idx: f"ILSVRC2012_val_{image_idx + 1:08d}.JPEG",
            num_examples=num_samples,
        )
        images_root = files[0].parent
474
475
    else:  # config.split == "test"
        images_root = root / "ILSVRC2012_img_test_v10102019"
476

477
        num_samples = 3
478

479
480
481
482
483
484
        create_image_folder(
            root=images_root,
            name="test",
            file_name_fn=lambda image_idx: f"ILSVRC2012_test_{image_idx + 1:08d}.JPEG",
            num_examples=num_samples,
        )
485
    make_tar(root, f"{images_root.name}.tar", images_root)
486
487
488
489
490
491
492
493

    devkit_root = root / "ILSVRC2012_devkit_t12"
    devkit_root.mkdir()
    data_root = devkit_root / "data"
    data_root.mkdir()
    with open(data_root / "ILSVRC2012_validation_ground_truth.txt", "w") as file:
        for label in torch.randint(0, len(wnids), (num_samples,)).tolist():
            file.write(f"{label}\n")
494
495
496
    make_tar(root, f"{devkit_root}.tar.gz", devkit_root, compression="gz")

    return num_samples
Philip Meier's avatar
Philip Meier committed
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606


class CocoMockData:
    @classmethod
    def _make_images_archive(cls, root, name, *, num_samples):
        image_paths = create_image_folder(
            root, name, file_name_fn=lambda idx: f"{idx:012d}.jpg", num_examples=num_samples
        )

        images_meta = []
        for path in image_paths:
            with PIL.Image.open(path) as image:
                width, height = image.size
            images_meta.append(dict(file_name=path.name, id=int(path.stem), width=width, height=height))

        make_zip(root, f"{name}.zip")

        return images_meta

    @classmethod
    def _make_annotations_json(
        cls,
        root,
        name,
        *,
        images_meta,
        fn,
    ):
        num_anns_per_image = torch.randint(1, 5, (len(images_meta),))
        num_anns_total = int(num_anns_per_image.sum())
        ann_ids_iter = iter(torch.arange(num_anns_total)[torch.randperm(num_anns_total)])

        anns_meta = []
        for image_meta, num_anns in zip(images_meta, num_anns_per_image):
            for _ in range(num_anns):
                ann_id = int(next(ann_ids_iter))
                anns_meta.append(dict(fn(ann_id, image_meta), id=ann_id, image_id=image_meta["id"]))
        anns_meta.sort(key=lambda ann: ann["id"])

        with open(root / name, "w") as file:
            json.dump(dict(images=images_meta, annotations=anns_meta), file)

        return num_anns_per_image

    @staticmethod
    def _make_instances_data(ann_id, image_meta):
        def make_rle_segmentation():
            height, width = image_meta["height"], image_meta["width"]
            numel = height * width
            counts = []
            while sum(counts) <= numel:
                counts.append(int(torch.randint(5, 8, ())))
            if sum(counts) > numel:
                counts[-1] -= sum(counts) - numel
            return dict(counts=counts, size=[height, width])

        return dict(
            segmentation=make_rle_segmentation(),
            bbox=make_tensor((4,), dtype=torch.float32, low=0).tolist(),
            iscrowd=True,
            area=float(make_scalar(dtype=torch.float32)),
            category_id=int(make_scalar(dtype=torch.int64)),
        )

    @staticmethod
    def _make_captions_data(ann_id, image_meta):
        return dict(caption=f"Caption {ann_id} describing image {image_meta['id']}.")

    @classmethod
    def _make_annotations(cls, root, name, *, images_meta):
        num_anns_per_image = torch.zeros((len(images_meta),), dtype=torch.int64)
        for annotations, fn in (
            ("instances", cls._make_instances_data),
            ("captions", cls._make_captions_data),
        ):
            num_anns_per_image += cls._make_annotations_json(
                root, f"{annotations}_{name}.json", images_meta=images_meta, fn=fn
            )

        return int(num_anns_per_image.sum())

    @classmethod
    def generate(
        cls,
        root,
        *,
        year,
        num_samples,
    ):
        annotations_dir = root / "annotations"
        annotations_dir.mkdir()

        for split in ("train", "val"):
            config_name = f"{split}{year}"

            images_meta = cls._make_images_archive(root, config_name, num_samples=num_samples)
            cls._make_annotations(
                annotations_dir,
                config_name,
                images_meta=images_meta,
            )

        make_zip(root, f"annotations_trainval{year}.zip", annotations_dir)

        return num_samples


@dataset_mocks.register_mock_data_fn
def coco(info, root, config):
    return CocoMockData.generate(root, year=config.year, num_samples=5)