vision_transformer.py 24.4 KB
Newer Older
1
2
3
import math
from collections import OrderedDict
from functools import partial
4
from typing import Any, Callable, List, NamedTuple, Optional, Sequence, Dict
5
6
7
8

import torch
import torch.nn as nn

9
from ..ops.misc import Conv2dNormActivation
10
from ..transforms._presets import ImageClassification, InterpolationMode
11
from ..utils import _log_api_usage_once
12
13
14
15
from ._api import WeightsEnum, Weights
from ._meta import _IMAGENET_CATEGORIES
from ._utils import handle_legacy_interface, _ovewrite_named_param

16
17
18

__all__ = [
    "VisionTransformer",
19
20
21
22
    "ViT_B_16_Weights",
    "ViT_B_32_Weights",
    "ViT_L_16_Weights",
    "ViT_L_32_Weights",
23
    "ViT_H_14_Weights",
24
25
26
27
    "vit_b_16",
    "vit_b_32",
    "vit_l_16",
    "vit_l_32",
28
    "vit_h_14",
29
30
31
]


32
33
34
35
36
37
38
39
class ConvStemConfig(NamedTuple):
    out_channels: int
    kernel_size: int
    stride: int
    norm_layer: Callable[..., nn.Module] = nn.BatchNorm2d
    activation_layer: Callable[..., nn.Module] = nn.ReLU


40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
class MLPBlock(nn.Sequential):
    """Transformer MLP block."""

    def __init__(self, in_dim: int, mlp_dim: int, dropout: float):
        super().__init__()
        self.linear_1 = nn.Linear(in_dim, mlp_dim)
        self.act = nn.GELU()
        self.dropout_1 = nn.Dropout(dropout)
        self.linear_2 = nn.Linear(mlp_dim, in_dim)
        self.dropout_2 = nn.Dropout(dropout)

        nn.init.xavier_uniform_(self.linear_1.weight)
        nn.init.xavier_uniform_(self.linear_2.weight)
        nn.init.normal_(self.linear_1.bias, std=1e-6)
        nn.init.normal_(self.linear_2.bias, std=1e-6)


class EncoderBlock(nn.Module):
    """Transformer encoder block."""

    def __init__(
        self,
        num_heads: int,
        hidden_dim: int,
        mlp_dim: int,
        dropout: float,
        attention_dropout: float,
        norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
    ):
        super().__init__()
        self.num_heads = num_heads

        # Attention block
        self.ln_1 = norm_layer(hidden_dim)
        self.self_attention = nn.MultiheadAttention(hidden_dim, num_heads, dropout=attention_dropout, batch_first=True)
        self.dropout = nn.Dropout(dropout)

        # MLP block
        self.ln_2 = norm_layer(hidden_dim)
        self.mlp = MLPBlock(hidden_dim, mlp_dim, dropout)

    def forward(self, input: torch.Tensor):
tcmyxc's avatar
tcmyxc committed
82
        torch._assert(input.dim() == 3, f"Expected (batch_size, seq_length, hidden_dim) got {input.shape}")
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
        x = self.ln_1(input)
        x, _ = self.self_attention(query=x, key=x, value=x, need_weights=False)
        x = self.dropout(x)
        x = x + input

        y = self.ln_2(x)
        y = self.mlp(y)
        return x + y


class Encoder(nn.Module):
    """Transformer Model Encoder for sequence to sequence translation."""

    def __init__(
        self,
        seq_length: int,
        num_layers: int,
        num_heads: int,
        hidden_dim: int,
        mlp_dim: int,
        dropout: float,
        attention_dropout: float,
        norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
    ):
        super().__init__()
        # Note that batch_size is on the first dim because
        # we have batch_first=True in nn.MultiAttention() by default
        self.pos_embedding = nn.Parameter(torch.empty(1, seq_length, hidden_dim).normal_(std=0.02))  # from BERT
        self.dropout = nn.Dropout(dropout)
        layers: OrderedDict[str, nn.Module] = OrderedDict()
        for i in range(num_layers):
            layers[f"encoder_layer_{i}"] = EncoderBlock(
                num_heads,
                hidden_dim,
                mlp_dim,
                dropout,
                attention_dropout,
                norm_layer,
            )
        self.layers = nn.Sequential(layers)
        self.ln = norm_layer(hidden_dim)

    def forward(self, input: torch.Tensor):
        torch._assert(input.dim() == 3, f"Expected (batch_size, seq_length, hidden_dim) got {input.shape}")
        input = input + self.pos_embedding
        return self.ln(self.layers(self.dropout(input)))


class VisionTransformer(nn.Module):
    """Vision Transformer as per https://arxiv.org/abs/2010.11929."""

    def __init__(
        self,
        image_size: int,
        patch_size: int,
        num_layers: int,
        num_heads: int,
        hidden_dim: int,
        mlp_dim: int,
        dropout: float = 0.0,
        attention_dropout: float = 0.0,
        num_classes: int = 1000,
        representation_size: Optional[int] = None,
        norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
147
        conv_stem_configs: Optional[List[ConvStemConfig]] = None,
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    ):
        super().__init__()
        _log_api_usage_once(self)
        torch._assert(image_size % patch_size == 0, "Input shape indivisible by patch size!")
        self.image_size = image_size
        self.patch_size = patch_size
        self.hidden_dim = hidden_dim
        self.mlp_dim = mlp_dim
        self.attention_dropout = attention_dropout
        self.dropout = dropout
        self.num_classes = num_classes
        self.representation_size = representation_size
        self.norm_layer = norm_layer

162
163
164
165
166
167
168
        if conv_stem_configs is not None:
            # As per https://arxiv.org/abs/2106.14881
            seq_proj = nn.Sequential()
            prev_channels = 3
            for i, conv_stem_layer_config in enumerate(conv_stem_configs):
                seq_proj.add_module(
                    f"conv_bn_relu_{i}",
169
                    Conv2dNormActivation(
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
                        in_channels=prev_channels,
                        out_channels=conv_stem_layer_config.out_channels,
                        kernel_size=conv_stem_layer_config.kernel_size,
                        stride=conv_stem_layer_config.stride,
                        norm_layer=conv_stem_layer_config.norm_layer,
                        activation_layer=conv_stem_layer_config.activation_layer,
                    ),
                )
                prev_channels = conv_stem_layer_config.out_channels
            seq_proj.add_module(
                "conv_last", nn.Conv2d(in_channels=prev_channels, out_channels=hidden_dim, kernel_size=1)
            )
            self.conv_proj: nn.Module = seq_proj
        else:
            self.conv_proj = nn.Conv2d(
                in_channels=3, out_channels=hidden_dim, kernel_size=patch_size, stride=patch_size
            )
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

        seq_length = (image_size // patch_size) ** 2

        # Add a class token
        self.class_token = nn.Parameter(torch.zeros(1, 1, hidden_dim))
        seq_length += 1

        self.encoder = Encoder(
            seq_length,
            num_layers,
            num_heads,
            hidden_dim,
            mlp_dim,
            dropout,
            attention_dropout,
            norm_layer,
        )
        self.seq_length = seq_length

        heads_layers: OrderedDict[str, nn.Module] = OrderedDict()
        if representation_size is None:
            heads_layers["head"] = nn.Linear(hidden_dim, num_classes)
        else:
            heads_layers["pre_logits"] = nn.Linear(hidden_dim, representation_size)
            heads_layers["act"] = nn.Tanh()
            heads_layers["head"] = nn.Linear(representation_size, num_classes)

        self.heads = nn.Sequential(heads_layers)

216
217
218
219
        if isinstance(self.conv_proj, nn.Conv2d):
            # Init the patchify stem
            fan_in = self.conv_proj.in_channels * self.conv_proj.kernel_size[0] * self.conv_proj.kernel_size[1]
            nn.init.trunc_normal_(self.conv_proj.weight, std=math.sqrt(1 / fan_in))
220
221
222
            if self.conv_proj.bias is not None:
                nn.init.zeros_(self.conv_proj.bias)
        elif self.conv_proj.conv_last is not None and isinstance(self.conv_proj.conv_last, nn.Conv2d):
223
224
225
226
            # Init the last 1x1 conv of the conv stem
            nn.init.normal_(
                self.conv_proj.conv_last.weight, mean=0.0, std=math.sqrt(2.0 / self.conv_proj.conv_last.out_channels)
            )
227
228
            if self.conv_proj.conv_last.bias is not None:
                nn.init.zeros_(self.conv_proj.conv_last.bias)
229

230
        if hasattr(self.heads, "pre_logits") and isinstance(self.heads.pre_logits, nn.Linear):
231
232
233
234
            fan_in = self.heads.pre_logits.in_features
            nn.init.trunc_normal_(self.heads.pre_logits.weight, std=math.sqrt(1 / fan_in))
            nn.init.zeros_(self.heads.pre_logits.bias)

235
236
237
        if isinstance(self.heads.head, nn.Linear):
            nn.init.zeros_(self.heads.head.weight)
            nn.init.zeros_(self.heads.head.bias)
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

    def _process_input(self, x: torch.Tensor) -> torch.Tensor:
        n, c, h, w = x.shape
        p = self.patch_size
        torch._assert(h == self.image_size, "Wrong image height!")
        torch._assert(w == self.image_size, "Wrong image width!")
        n_h = h // p
        n_w = w // p

        # (n, c, h, w) -> (n, hidden_dim, n_h, n_w)
        x = self.conv_proj(x)
        # (n, hidden_dim, n_h, n_w) -> (n, hidden_dim, (n_h * n_w))
        x = x.reshape(n, self.hidden_dim, n_h * n_w)

        # (n, hidden_dim, (n_h * n_w)) -> (n, (n_h * n_w), hidden_dim)
        # The self attention layer expects inputs in the format (N, S, E)
        # where S is the source sequence length, N is the batch size, E is the
        # embedding dimension
        x = x.permute(0, 2, 1)

        return x

    def forward(self, x: torch.Tensor):
        # Reshape and permute the input tensor
        x = self._process_input(x)
        n = x.shape[0]

        # Expand the class token to the full batch
        batch_class_token = self.class_token.expand(n, -1, -1)
        x = torch.cat([batch_class_token, x], dim=1)

        x = self.encoder(x)

        # Classifier "token" as used by standard language architectures
        x = x[:, 0]

        x = self.heads(x)

        return x


def _vision_transformer(
    patch_size: int,
    num_layers: int,
    num_heads: int,
    hidden_dim: int,
    mlp_dim: int,
285
    weights: Optional[WeightsEnum],
286
287
288
    progress: bool,
    **kwargs: Any,
) -> VisionTransformer:
289
290
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
291
292
293
294
295
296
297
298
299
300
301
302
303
        if isinstance(weights.meta["size"], int):
            _ovewrite_named_param(kwargs, "image_size", weights.meta["size"])
        elif isinstance(weights.meta["size"], Sequence):
            if len(weights.meta["size"]) != 2 or weights.meta["size"][0] != weights.meta["size"][1]:
                raise ValueError(
                    f'size: {weights.meta["size"]} is not valid! Currently we only support a 2-dimensional square and width = height'
                )
            _ovewrite_named_param(kwargs, "image_size", weights.meta["size"][0])
        else:
            raise ValueError(
                f'weights.meta["size"]: {weights.meta["size"]} is not valid, the type should be either an int or a Sequence[int]'
            )
    image_size = kwargs.pop("image_size", 224)
304

305
306
307
308
309
310
311
312
313
314
    model = VisionTransformer(
        image_size=image_size,
        patch_size=patch_size,
        num_layers=num_layers,
        num_heads=num_heads,
        hidden_dim=hidden_dim,
        mlp_dim=mlp_dim,
        **kwargs,
    )

315
316
    if weights:
        model.load_state_dict(weights.get_state_dict(progress=progress))
317
318
319
320

    return model


321
_COMMON_META: Dict[str, Any] = {
322
323
324
325
326
    "task": "image_classification",
    "architecture": "ViT",
    "categories": _IMAGENET_CATEGORIES,
}

327
_COMMON_SWAG_META: Dict[str, Any] = {
328
329
330
331
332
    **_COMMON_META,
    "recipe": "https://github.com/facebookresearch/SWAG",
    "license": "https://github.com/facebookresearch/SWAG/blob/main/LICENSE",
}

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

class ViT_B_16_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/vit_b_16-c867db91.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 86567656,
            "size": (224, 224),
            "min_size": (224, 224),
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#vit_b_16",
            "acc@1": 81.072,
            "acc@5": 95.318,
        },
    )
348
    IMAGENET1K_SWAG_E2E_V1 = Weights(
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
        url="https://download.pytorch.org/models/vit_b_16_swag-9ac1b537.pth",
        transforms=partial(
            ImageClassification,
            crop_size=384,
            resize_size=384,
            interpolation=InterpolationMode.BICUBIC,
        ),
        meta={
            **_COMMON_SWAG_META,
            "num_params": 86859496,
            "size": (384, 384),
            "min_size": (384, 384),
            "acc@1": 85.304,
            "acc@5": 97.650,
        },
    )
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
    IMAGENET1K_SWAG_LINEAR_V1 = Weights(
        url="https://download.pytorch.org/models/vit_b_16_lc_swag-4e70ced5.pth",
        transforms=partial(
            ImageClassification,
            crop_size=224,
            resize_size=224,
            interpolation=InterpolationMode.BICUBIC,
        ),
        meta={
            **_COMMON_SWAG_META,
            "recipe": "https://github.com/pytorch/vision/pull/5793",
            "num_params": 86567656,
            "size": (224, 224),
            "min_size": (224, 224),
            "acc@1": 81.886,
            "acc@5": 96.180,
        },
    )
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
    DEFAULT = IMAGENET1K_V1


class ViT_B_32_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/vit_b_32-d86f8d99.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 88224232,
            "size": (224, 224),
            "min_size": (224, 224),
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#vit_b_32",
            "acc@1": 75.912,
            "acc@5": 92.466,
        },
    )
    DEFAULT = IMAGENET1K_V1


class ViT_L_16_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/vit_l_16-852ce7e3.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=242),
        meta={
            **_COMMON_META,
            "num_params": 304326632,
            "size": (224, 224),
            "min_size": (224, 224),
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#vit_l_16",
            "acc@1": 79.662,
            "acc@5": 94.638,
        },
    )
417
    IMAGENET1K_SWAG_E2E_V1 = Weights(
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
        url="https://download.pytorch.org/models/vit_l_16_swag-4f3808c9.pth",
        transforms=partial(
            ImageClassification,
            crop_size=512,
            resize_size=512,
            interpolation=InterpolationMode.BICUBIC,
        ),
        meta={
            **_COMMON_SWAG_META,
            "num_params": 305174504,
            "size": (512, 512),
            "min_size": (512, 512),
            "acc@1": 88.064,
            "acc@5": 98.512,
        },
    )
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
    IMAGENET1K_SWAG_LINEAR_V1 = Weights(
        url="https://download.pytorch.org/models/vit_l_16_lc_swag-4d563306.pth",
        transforms=partial(
            ImageClassification,
            crop_size=224,
            resize_size=224,
            interpolation=InterpolationMode.BICUBIC,
        ),
        meta={
            **_COMMON_SWAG_META,
            "recipe": "https://github.com/pytorch/vision/pull/5793",
            "num_params": 304326632,
            "size": (224, 224),
            "min_size": (224, 224),
            "acc@1": 85.146,
            "acc@5": 97.422,
        },
    )
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
    DEFAULT = IMAGENET1K_V1


class ViT_L_32_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/vit_l_32-c7638314.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 306535400,
            "size": (224, 224),
            "min_size": (224, 224),
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#vit_l_32",
            "acc@1": 76.972,
            "acc@5": 93.07,
        },
    )
    DEFAULT = IMAGENET1K_V1


472
class ViT_H_14_Weights(WeightsEnum):
473
    IMAGENET1K_SWAG_E2E_V1 = Weights(
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
        url="https://download.pytorch.org/models/vit_h_14_swag-80465313.pth",
        transforms=partial(
            ImageClassification,
            crop_size=518,
            resize_size=518,
            interpolation=InterpolationMode.BICUBIC,
        ),
        meta={
            **_COMMON_SWAG_META,
            "num_params": 633470440,
            "size": (518, 518),
            "min_size": (518, 518),
            "acc@1": 88.552,
            "acc@5": 98.694,
        },
    )
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
    IMAGENET1K_SWAG_LINEAR_V1 = Weights(
        url="https://download.pytorch.org/models/vit_h_14_lc_swag-c1eb923e.pth",
        transforms=partial(
            ImageClassification,
            crop_size=224,
            resize_size=224,
            interpolation=InterpolationMode.BICUBIC,
        ),
        meta={
            **_COMMON_SWAG_META,
            "recipe": "https://github.com/pytorch/vision/pull/5793",
            "num_params": 632045800,
            "size": (224, 224),
            "min_size": (224, 224),
            "acc@1": 85.708,
            "acc@5": 97.730,
        },
    )
    DEFAULT = IMAGENET1K_SWAG_E2E_V1
509
510


511
512
@handle_legacy_interface(weights=("pretrained", ViT_B_16_Weights.IMAGENET1K_V1))
def vit_b_16(*, weights: Optional[ViT_B_16_Weights] = None, progress: bool = True, **kwargs: Any) -> VisionTransformer:
513
514
515
516
517
    """
    Constructs a vit_b_16 architecture from
    `"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" <https://arxiv.org/abs/2010.11929>`_.

    Args:
518
        weights (ViT_B_16_Weights, optional): The pretrained weights for the model
519
520
        progress (bool): If True, displays a progress bar of the download to stderr
    """
521
522
    weights = ViT_B_16_Weights.verify(weights)

523
524
525
526
527
528
    return _vision_transformer(
        patch_size=16,
        num_layers=12,
        num_heads=12,
        hidden_dim=768,
        mlp_dim=3072,
529
        weights=weights,
530
531
532
533
534
        progress=progress,
        **kwargs,
    )


535
536
@handle_legacy_interface(weights=("pretrained", ViT_B_32_Weights.IMAGENET1K_V1))
def vit_b_32(*, weights: Optional[ViT_B_32_Weights] = None, progress: bool = True, **kwargs: Any) -> VisionTransformer:
537
538
539
540
541
    """
    Constructs a vit_b_32 architecture from
    `"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" <https://arxiv.org/abs/2010.11929>`_.

    Args:
542
        weights (ViT_B_32_Weights, optional): The pretrained weights for the model
543
544
        progress (bool): If True, displays a progress bar of the download to stderr
    """
545
546
    weights = ViT_B_32_Weights.verify(weights)

547
548
549
550
551
552
    return _vision_transformer(
        patch_size=32,
        num_layers=12,
        num_heads=12,
        hidden_dim=768,
        mlp_dim=3072,
553
        weights=weights,
554
555
556
557
558
        progress=progress,
        **kwargs,
    )


559
560
@handle_legacy_interface(weights=("pretrained", ViT_L_16_Weights.IMAGENET1K_V1))
def vit_l_16(*, weights: Optional[ViT_L_16_Weights] = None, progress: bool = True, **kwargs: Any) -> VisionTransformer:
561
562
563
564
565
    """
    Constructs a vit_l_16 architecture from
    `"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" <https://arxiv.org/abs/2010.11929>`_.

    Args:
566
        weights (ViT_L_16_Weights, optional): The pretrained weights for the model
567
568
        progress (bool): If True, displays a progress bar of the download to stderr
    """
569
570
    weights = ViT_L_16_Weights.verify(weights)

571
572
573
574
575
576
    return _vision_transformer(
        patch_size=16,
        num_layers=24,
        num_heads=16,
        hidden_dim=1024,
        mlp_dim=4096,
577
        weights=weights,
578
579
580
581
582
        progress=progress,
        **kwargs,
    )


583
584
@handle_legacy_interface(weights=("pretrained", ViT_L_32_Weights.IMAGENET1K_V1))
def vit_l_32(*, weights: Optional[ViT_L_32_Weights] = None, progress: bool = True, **kwargs: Any) -> VisionTransformer:
585
586
587
588
589
    """
    Constructs a vit_l_32 architecture from
    `"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" <https://arxiv.org/abs/2010.11929>`_.

    Args:
590
        weights (ViT_L_32_Weights, optional): The pretrained weights for the model
591
592
        progress (bool): If True, displays a progress bar of the download to stderr
    """
593
594
    weights = ViT_L_32_Weights.verify(weights)

595
596
597
598
599
600
    return _vision_transformer(
        patch_size=32,
        num_layers=24,
        num_heads=16,
        hidden_dim=1024,
        mlp_dim=4096,
601
        weights=weights,
602
603
604
605
606
        progress=progress,
        **kwargs,
    )


607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
def vit_h_14(*, weights: Optional[ViT_H_14_Weights] = None, progress: bool = True, **kwargs: Any) -> VisionTransformer:
    """
    Constructs a vit_h_14 architecture from
    `"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" <https://arxiv.org/abs/2010.11929>`_.

    Args:
        weights (ViT_H_14_Weights, optional): The pretrained weights for the model
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    weights = ViT_H_14_Weights.verify(weights)

    return _vision_transformer(
        patch_size=14,
        num_layers=32,
        num_heads=16,
        hidden_dim=1280,
        mlp_dim=5120,
        weights=weights,
        progress=progress,
        **kwargs,
    )


630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
def interpolate_embeddings(
    image_size: int,
    patch_size: int,
    model_state: "OrderedDict[str, torch.Tensor]",
    interpolation_mode: str = "bicubic",
    reset_heads: bool = False,
) -> "OrderedDict[str, torch.Tensor]":
    """This function helps interpolating positional embeddings during checkpoint loading,
    especially when you want to apply a pre-trained model on images with different resolution.

    Args:
        image_size (int): Image size of the new model.
        patch_size (int): Patch size of the new model.
        model_state (OrderedDict[str, torch.Tensor]): State dict of the pre-trained model.
        interpolation_mode (str): The algorithm used for upsampling. Default: bicubic.
        reset_heads (bool): If true, not copying the state of heads. Default: False.

    Returns:
        OrderedDict[str, torch.Tensor]: A state dict which can be loaded into the new model.
    """
    # Shape of pos_embedding is (1, seq_length, hidden_dim)
    pos_embedding = model_state["encoder.pos_embedding"]
    n, seq_length, hidden_dim = pos_embedding.shape
    if n != 1:
        raise ValueError(f"Unexpected position embedding shape: {pos_embedding.shape}")

    new_seq_length = (image_size // patch_size) ** 2 + 1

    # Need to interpolate the weights for the position embedding.
    # We do this by reshaping the positions embeddings to a 2d grid, performing
    # an interpolation in the (h, w) space and then reshaping back to a 1d grid.
    if new_seq_length != seq_length:
        # The class token embedding shouldn't be interpolated so we split it up.
        seq_length -= 1
        new_seq_length -= 1
        pos_embedding_token = pos_embedding[:, :1, :]
        pos_embedding_img = pos_embedding[:, 1:, :]

        # (1, seq_length, hidden_dim) -> (1, hidden_dim, seq_length)
        pos_embedding_img = pos_embedding_img.permute(0, 2, 1)
        seq_length_1d = int(math.sqrt(seq_length))
671
672
673
674
        if seq_length_1d * seq_length_1d != seq_length:
            raise ValueError(
                f"seq_length is not a perfect square! Instead got seq_length_1d * seq_length_1d = {seq_length_1d * seq_length_1d } and seq_length = {seq_length}"
            )
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705

        # (1, hidden_dim, seq_length) -> (1, hidden_dim, seq_l_1d, seq_l_1d)
        pos_embedding_img = pos_embedding_img.reshape(1, hidden_dim, seq_length_1d, seq_length_1d)
        new_seq_length_1d = image_size // patch_size

        # Perform interpolation.
        # (1, hidden_dim, seq_l_1d, seq_l_1d) -> (1, hidden_dim, new_seq_l_1d, new_seq_l_1d)
        new_pos_embedding_img = nn.functional.interpolate(
            pos_embedding_img,
            size=new_seq_length_1d,
            mode=interpolation_mode,
            align_corners=True,
        )

        # (1, hidden_dim, new_seq_l_1d, new_seq_l_1d) -> (1, hidden_dim, new_seq_length)
        new_pos_embedding_img = new_pos_embedding_img.reshape(1, hidden_dim, new_seq_length)

        # (1, hidden_dim, new_seq_length) -> (1, new_seq_length, hidden_dim)
        new_pos_embedding_img = new_pos_embedding_img.permute(0, 2, 1)
        new_pos_embedding = torch.cat([pos_embedding_token, new_pos_embedding_img], dim=1)

        model_state["encoder.pos_embedding"] = new_pos_embedding

        if reset_heads:
            model_state_copy: "OrderedDict[str, torch.Tensor]" = OrderedDict()
            for k, v in model_state.items():
                if not k.startswith("heads"):
                    model_state_copy[k] = v
            model_state = model_state_copy

    return model_state