inception.py 9.57 KB
Newer Older
1
import warnings
2
3
from functools import partial
from typing import Any, List, Optional, Union
4
5
6
7

import torch
import torch.nn as nn
import torch.nn.functional as F
8
from torch import Tensor
9
from torchvision.models import inception as inception_module
10
from torchvision.models.inception import InceptionOutputs, Inception_V3_Weights
11

12
from ...transforms._presets import ImageClassification
13
14
15
from .._api import WeightsEnum, Weights
from .._meta import _IMAGENET_CATEGORIES
from .._utils import handle_legacy_interface, _ovewrite_named_param
16
from .utils import _fuse_modules, _replace_relu, quantize_model
17
18
19
20


__all__ = [
    "QuantizableInception3",
21
    "Inception_V3_QuantizedWeights",
22
23
24
25
26
    "inception_v3",
]


class QuantizableBasicConv2d(inception_module.BasicConv2d):
27
    def __init__(self, *args: Any, **kwargs: Any) -> None:
28
        super().__init__(*args, **kwargs)
29
30
        self.relu = nn.ReLU()

31
    def forward(self, x: Tensor) -> Tensor:
32
33
34
35
36
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        return x

37
38
    def fuse_model(self, is_qat: Optional[bool] = None) -> None:
        _fuse_modules(self, ["conv", "bn", "relu"], is_qat, inplace=True)
39
40
41


class QuantizableInceptionA(inception_module.InceptionA):
42
43
    # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
    def __init__(self, *args: Any, **kwargs: Any) -> None:
44
        super().__init__(conv_block=QuantizableBasicConv2d, *args, **kwargs)  # type: ignore[misc]
45
46
        self.myop = nn.quantized.FloatFunctional()

47
    def forward(self, x: Tensor) -> Tensor:
48
49
50
51
52
        outputs = self._forward(x)
        return self.myop.cat(outputs, 1)


class QuantizableInceptionB(inception_module.InceptionB):
53
54
    # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
    def __init__(self, *args: Any, **kwargs: Any) -> None:
55
        super().__init__(conv_block=QuantizableBasicConv2d, *args, **kwargs)  # type: ignore[misc]
56
57
        self.myop = nn.quantized.FloatFunctional()

58
    def forward(self, x: Tensor) -> Tensor:
59
60
61
62
63
        outputs = self._forward(x)
        return self.myop.cat(outputs, 1)


class QuantizableInceptionC(inception_module.InceptionC):
64
65
    # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
    def __init__(self, *args: Any, **kwargs: Any) -> None:
66
        super().__init__(conv_block=QuantizableBasicConv2d, *args, **kwargs)  # type: ignore[misc]
67
68
        self.myop = nn.quantized.FloatFunctional()

69
    def forward(self, x: Tensor) -> Tensor:
70
71
72
73
74
        outputs = self._forward(x)
        return self.myop.cat(outputs, 1)


class QuantizableInceptionD(inception_module.InceptionD):
75
76
    # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
    def __init__(self, *args: Any, **kwargs: Any) -> None:
77
        super().__init__(conv_block=QuantizableBasicConv2d, *args, **kwargs)  # type: ignore[misc]
78
79
        self.myop = nn.quantized.FloatFunctional()

80
    def forward(self, x: Tensor) -> Tensor:
81
82
83
84
85
        outputs = self._forward(x)
        return self.myop.cat(outputs, 1)


class QuantizableInceptionE(inception_module.InceptionE):
86
87
    # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
    def __init__(self, *args: Any, **kwargs: Any) -> None:
88
        super().__init__(conv_block=QuantizableBasicConv2d, *args, **kwargs)  # type: ignore[misc]
hx89's avatar
hx89 committed
89
90
91
        self.myop1 = nn.quantized.FloatFunctional()
        self.myop2 = nn.quantized.FloatFunctional()
        self.myop3 = nn.quantized.FloatFunctional()
92

93
    def _forward(self, x: Tensor) -> List[Tensor]:
94
95
96
97
        branch1x1 = self.branch1x1(x)

        branch3x3 = self.branch3x3_1(x)
        branch3x3 = [self.branch3x3_2a(branch3x3), self.branch3x3_2b(branch3x3)]
hx89's avatar
hx89 committed
98
        branch3x3 = self.myop1.cat(branch3x3, 1)
99
100
101
102
103
104
105

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = [
            self.branch3x3dbl_3a(branch3x3dbl),
            self.branch3x3dbl_3b(branch3x3dbl),
        ]
hx89's avatar
hx89 committed
106
        branch3x3dbl = self.myop2.cat(branch3x3dbl, 1)
107
108
109
110
111
112
113

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
        return outputs

114
    def forward(self, x: Tensor) -> Tensor:
115
        outputs = self._forward(x)
hx89's avatar
hx89 committed
116
        return self.myop3.cat(outputs, 1)
117
118
119


class QuantizableInceptionAux(inception_module.InceptionAux):
120
121
    # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
    def __init__(self, *args: Any, **kwargs: Any) -> None:
122
        super().__init__(conv_block=QuantizableBasicConv2d, *args, **kwargs)  # type: ignore[misc]
123
124
125


class QuantizableInception3(inception_module.Inception3):
126
127
128
129
130
131
    def __init__(
        self,
        num_classes: int = 1000,
        aux_logits: bool = True,
        transform_input: bool = False,
    ) -> None:
132
        super().__init__(
133
134
135
136
137
138
139
140
141
142
            num_classes=num_classes,
            aux_logits=aux_logits,
            transform_input=transform_input,
            inception_blocks=[
                QuantizableBasicConv2d,
                QuantizableInceptionA,
                QuantizableInceptionB,
                QuantizableInceptionC,
                QuantizableInceptionD,
                QuantizableInceptionE,
143
144
                QuantizableInceptionAux,
            ],
145
        )
146
147
        self.quant = torch.ao.quantization.QuantStub()
        self.dequant = torch.ao.quantization.DeQuantStub()
148

149
    def forward(self, x: Tensor) -> InceptionOutputs:
150
151
152
153
154
155
156
157
158
159
160
161
        x = self._transform_input(x)
        x = self.quant(x)
        x, aux = self._forward(x)
        x = self.dequant(x)
        aux_defined = self.training and self.aux_logits
        if torch.jit.is_scripting():
            if not aux_defined:
                warnings.warn("Scripted QuantizableInception3 always returns QuantizableInception3 Tuple")
            return InceptionOutputs(x, aux)
        else:
            return self.eager_outputs(x, aux)

162
    def fuse_model(self, is_qat: Optional[bool] = None) -> None:
163
164
165
166
167
168
169
170
        r"""Fuse conv/bn/relu modules in inception model

        Fuse conv+bn+relu/ conv+relu/conv+bn modules to prepare for quantization.
        Model is modified in place.  Note that this operation does not change numerics
        and the model after modification is in floating point
        """

        for m in self.modules():
171
            if type(m) is QuantizableBasicConv2d:
172
                m.fuse_model(is_qat)
173
174


175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
class Inception_V3_QuantizedWeights(WeightsEnum):
    IMAGENET1K_FBGEMM_V1 = Weights(
        url="https://download.pytorch.org/models/quantized/inception_v3_google_fbgemm-71447a44.pth",
        transforms=partial(ImageClassification, crop_size=299, resize_size=342),
        meta={
            "task": "image_classification",
            "architecture": "InceptionV3",
            "num_params": 27161264,
            "size": (299, 299),
            "min_size": (75, 75),
            "categories": _IMAGENET_CATEGORIES,
            "backend": "fbgemm",
            "quantization": "Post Training Quantization",
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models",
            "unquantized": Inception_V3_Weights.IMAGENET1K_V1,
            "acc@1": 77.176,
            "acc@5": 93.354,
        },
    )
    DEFAULT = IMAGENET1K_FBGEMM_V1


@handle_legacy_interface(
    weights=(
        "pretrained",
        lambda kwargs: Inception_V3_QuantizedWeights.IMAGENET1K_FBGEMM_V1
        if kwargs.get("quantize", False)
        else Inception_V3_Weights.IMAGENET1K_V1,
    )
)
205
def inception_v3(
206
207
    *,
    weights: Optional[Union[Inception_V3_QuantizedWeights, Inception_V3_Weights]] = None,
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableInception3:
    r"""Inception v3 model architecture from
    `"Rethinking the Inception Architecture for Computer Vision" <http://arxiv.org/abs/1512.00567>`_.

    .. note::
        **Important**: In contrast to the other models the inception_v3 expects tensors with a size of
        N x 3 x 299 x 299, so ensure your images are sized accordingly.

    Note that quantize = True returns a quantized model with 8 bit
    weights. Quantized models only support inference and run on CPUs.
    GPU inference is not yet supported

    Args:
224
225
        weights (Inception_V3_QuantizedWeights or Inception_V3_Weights, optional): The pretrained
            weights for the model
226
227
228
        progress (bool): If True, displays a progress bar of the download to stderr
        quantize (bool): If True, return a quantized version of the model
    """
229
230
231
232
    weights = (Inception_V3_QuantizedWeights if quantize else Inception_V3_Weights).verify(weights)

    original_aux_logits = kwargs.get("aux_logits", False)
    if weights is not None:
233
        if "transform_input" not in kwargs:
234
235
236
237
238
239
            _ovewrite_named_param(kwargs, "transform_input", True)
        _ovewrite_named_param(kwargs, "aux_logits", True)
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
        if "backend" in weights.meta:
            _ovewrite_named_param(kwargs, "backend", weights.meta["backend"])
    backend = kwargs.pop("backend", "fbgemm")
240
241
242
243
244
245

    model = QuantizableInception3(**kwargs)
    _replace_relu(model)
    if quantize:
        quantize_model(model, backend)

246
247
248
249
250
251
252
253
    if weights is not None:
        if quantize and not original_aux_logits:
            model.aux_logits = False
            model.AuxLogits = None
        model.load_state_dict(weights.get_state_dict(progress=progress))
        if not quantize and not original_aux_logits:
            model.aux_logits = False
            model.AuxLogits = None
254
255

    return model