googlenet.py 6.78 KB
Newer Older
1
import warnings
2
3
from functools import partial
from typing import Any, Optional, Union
4

5
6
import torch
import torch.nn as nn
7
from torch import Tensor
8
from torch.nn import functional as F
9

10
from ...transforms._presets import ImageClassification
11
12
13
14
from .._api import WeightsEnum, Weights
from .._meta import _IMAGENET_CATEGORIES
from .._utils import handle_legacy_interface, _ovewrite_named_param
from ..googlenet import GoogLeNetOutputs, BasicConv2d, Inception, InceptionAux, GoogLeNet, GoogLeNet_Weights
15
from .utils import _fuse_modules, _replace_relu, quantize_model
16
17


18
19
20
21
22
__all__ = [
    "QuantizableGoogLeNet",
    "GoogLeNet_QuantizedWeights",
    "googlenet",
]
23
24
25


class QuantizableBasicConv2d(BasicConv2d):
26
    def __init__(self, *args: Any, **kwargs: Any) -> None:
27
        super().__init__(*args, **kwargs)
28
29
        self.relu = nn.ReLU()

30
    def forward(self, x: Tensor) -> Tensor:
31
32
33
34
35
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        return x

36
37
    def fuse_model(self, is_qat: Optional[bool] = None) -> None:
        _fuse_modules(self, ["conv", "bn", "relu"], is_qat, inplace=True)
38
39
40


class QuantizableInception(Inception):
41
    def __init__(self, *args: Any, **kwargs: Any) -> None:
42
        super().__init__(conv_block=QuantizableBasicConv2d, *args, **kwargs)  # type: ignore[misc]
43
44
        self.cat = nn.quantized.FloatFunctional()

45
    def forward(self, x: Tensor) -> Tensor:
46
47
48
49
50
        outputs = self._forward(x)
        return self.cat.cat(outputs, 1)


class QuantizableInceptionAux(InceptionAux):
51
52
    # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
    def __init__(self, *args: Any, **kwargs: Any) -> None:
53
        super().__init__(conv_block=QuantizableBasicConv2d, *args, **kwargs)  # type: ignore[misc]
54
55
        self.relu = nn.ReLU()

56
    def forward(self, x: Tensor) -> Tensor:
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
        # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
        x = F.adaptive_avg_pool2d(x, (4, 4))
        # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
        x = self.conv(x)
        # N x 128 x 4 x 4
        x = torch.flatten(x, 1)
        # N x 2048
        x = self.relu(self.fc1(x))
        # N x 1024
        x = self.dropout(x)
        # N x 1024
        x = self.fc2(x)
        # N x 1000 (num_classes)

        return x


class QuantizableGoogLeNet(GoogLeNet):
75
76
    # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
    def __init__(self, *args: Any, **kwargs: Any) -> None:
77
        super().__init__(  # type: ignore[misc]
78
            blocks=[QuantizableBasicConv2d, QuantizableInception, QuantizableInceptionAux], *args, **kwargs
79
        )
80
81
        self.quant = torch.ao.quantization.QuantStub()
        self.dequant = torch.ao.quantization.DeQuantStub()
82

83
    def forward(self, x: Tensor) -> GoogLeNetOutputs:
84
85
86
87
88
89
90
91
92
93
94
95
        x = self._transform_input(x)
        x = self.quant(x)
        x, aux1, aux2 = self._forward(x)
        x = self.dequant(x)
        aux_defined = self.training and self.aux_logits
        if torch.jit.is_scripting():
            if not aux_defined:
                warnings.warn("Scripted QuantizableGoogleNet always returns GoogleNetOutputs Tuple")
            return GoogLeNetOutputs(x, aux2, aux1)
        else:
            return self.eager_outputs(x, aux2, aux1)

96
    def fuse_model(self, is_qat: Optional[bool] = None) -> None:
97
98
99
100
101
102
103
104
        r"""Fuse conv/bn/relu modules in googlenet model

        Fuse conv+bn+relu/ conv+relu/conv+bn modules to prepare for quantization.
        Model is modified in place.  Note that this operation does not change numerics
        and the model after modification is in floating point
        """

        for m in self.modules():
105
            if type(m) is QuantizableBasicConv2d:
106
                m.fuse_model(is_qat)
107
108


109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
class GoogLeNet_QuantizedWeights(WeightsEnum):
    IMAGENET1K_FBGEMM_V1 = Weights(
        url="https://download.pytorch.org/models/quantized/googlenet_fbgemm-c00238cf.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            "task": "image_classification",
            "architecture": "GoogLeNet",
            "num_params": 6624904,
            "size": (224, 224),
            "min_size": (15, 15),
            "categories": _IMAGENET_CATEGORIES,
            "backend": "fbgemm",
            "quantization": "Post Training Quantization",
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models",
            "unquantized": GoogLeNet_Weights.IMAGENET1K_V1,
            "acc@1": 69.826,
            "acc@5": 89.404,
        },
    )
    DEFAULT = IMAGENET1K_FBGEMM_V1


@handle_legacy_interface(
    weights=(
        "pretrained",
        lambda kwargs: GoogLeNet_QuantizedWeights.IMAGENET1K_FBGEMM_V1
        if kwargs.get("quantize", False)
        else GoogLeNet_Weights.IMAGENET1K_V1,
    )
)
139
def googlenet(
140
141
    *,
    weights: Optional[Union[GoogLeNet_QuantizedWeights, GoogLeNet_Weights]] = None,
142
143
144
145
146
147
148
149
150
151
152
153
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableGoogLeNet:
    r"""GoogLeNet (Inception v1) model architecture from
    `"Going Deeper with Convolutions" <http://arxiv.org/abs/1409.4842>`_.

    Note that quantize = True returns a quantized model with 8 bit
    weights. Quantized models only support inference and run on CPUs.
    GPU inference is not yet supported

    Args:
154
155
        weights (GoogLeNet_QuantizedWeights or GoogLeNet_Weights, optional): The pretrained
            weights for the model
156
157
158
        progress (bool): If True, displays a progress bar of the download to stderr
        quantize (bool): If True, return a quantized version of the model
    """
159
160
161
162
    weights = (GoogLeNet_QuantizedWeights if quantize else GoogLeNet_Weights).verify(weights)

    original_aux_logits = kwargs.get("aux_logits", False)
    if weights is not None:
163
        if "transform_input" not in kwargs:
164
165
166
167
168
169
170
            _ovewrite_named_param(kwargs, "transform_input", True)
        _ovewrite_named_param(kwargs, "aux_logits", True)
        _ovewrite_named_param(kwargs, "init_weights", False)
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
        if "backend" in weights.meta:
            _ovewrite_named_param(kwargs, "backend", weights.meta["backend"])
    backend = kwargs.pop("backend", "fbgemm")
171
172
173
174
175
176

    model = QuantizableGoogLeNet(**kwargs)
    _replace_relu(model)
    if quantize:
        quantize_model(model, backend)

177
178
    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))
179
180
181
182
        if not original_aux_logits:
            model.aux_logits = False
            model.aux1 = None  # type: ignore[assignment]
            model.aux2 = None  # type: ignore[assignment]
183
184
185
186
187
        else:
            warnings.warn(
                "auxiliary heads in the pretrained googlenet model are NOT pretrained, so make sure to train them"
            )

188
    return model