efficientnet.py 16 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import copy
import math
import torch

from functools import partial
from torch import nn, Tensor
from torch.nn import functional as F
from typing import Any, Callable, List, Optional, Sequence

from .._internally_replaced_utils import load_state_dict_from_url
from torchvision.ops import StochasticDepth

from torchvision.models.mobilenetv2 import ConvBNActivation, _make_divisible


__all__ = ["EfficientNet", "efficientnet_b0", "efficientnet_b1", "efficientnet_b2", "efficientnet_b3",
           "efficientnet_b4", "efficientnet_b5", "efficientnet_b6", "efficientnet_b7"]


model_urls = {
    # Weights ported from https://github.com/rwightman/pytorch-image-models/
    "efficientnet_b0": "https://download.pytorch.org/models/efficientnet_b0_rwightman-3dd342df.pth",
    "efficientnet_b1": "https://download.pytorch.org/models/efficientnet_b1_rwightman-533bc792.pth",
    "efficientnet_b2": "https://download.pytorch.org/models/efficientnet_b2_rwightman-bcdf34b7.pth",
    "efficientnet_b3": "https://download.pytorch.org/models/efficientnet_b3_rwightman-cf984f9c.pth",
    "efficientnet_b4": "https://download.pytorch.org/models/efficientnet_b4_rwightman-7eb33cd5.pth",
    # Weights ported from https://github.com/lukemelas/EfficientNet-PyTorch/
    "efficientnet_b5": "https://download.pytorch.org/models/efficientnet_b5_lukemelas-b6417697.pth",
    "efficientnet_b6": "https://download.pytorch.org/models/efficientnet_b6_lukemelas-c76e70fd.pth",
    "efficientnet_b7": "https://download.pytorch.org/models/efficientnet_b7_lukemelas-dcc49843.pth",
}


class SqueezeExcitation(nn.Module):
    def __init__(self, input_channels: int, squeeze_channels: int):
        super().__init__()
        self.fc1 = nn.Conv2d(input_channels, squeeze_channels, 1)
        self.fc2 = nn.Conv2d(squeeze_channels, input_channels, 1)

    def _scale(self, input: Tensor) -> Tensor:
        scale = F.adaptive_avg_pool2d(input, 1)
        scale = self.fc1(scale)
        scale = F.silu(scale, inplace=True)
        scale = self.fc2(scale)
        return scale.sigmoid()

    def forward(self, input: Tensor) -> Tensor:
        scale = self._scale(input)
        return scale * input


class MBConvConfig:
    # Stores information listed at Table 1 of the EfficientNet paper
    def __init__(self,
                 expand_ratio: float, kernel: int, stride: int,
                 input_channels: int, out_channels: int, num_layers: int,
                 width_mult: float, depth_mult: float) -> None:
        self.expand_ratio = expand_ratio
        self.kernel = kernel
        self.stride = stride
        self.input_channels = self.adjust_channels(input_channels, width_mult)
        self.out_channels = self.adjust_channels(out_channels, width_mult)
        self.num_layers = self.adjust_depth(num_layers, depth_mult)

    def __repr__(self) -> str:
        s = self.__class__.__name__ + '('
        s += 'expand_ratio={expand_ratio}'
        s += ', kernel={kernel}'
        s += ', stride={stride}'
        s += ', input_channels={input_channels}'
        s += ', out_channels={out_channels}'
        s += ', num_layers={num_layers}'
        s += ')'
        return s.format(**self.__dict__)

    @staticmethod
    def adjust_channels(channels: int, width_mult: float, min_value: Optional[int] = None) -> int:
        return _make_divisible(channels * width_mult, 8, min_value)

    @staticmethod
    def adjust_depth(num_layers: int, depth_mult: float):
        return int(math.ceil(num_layers * depth_mult))


class MBConv(nn.Module):
    def __init__(self, cnf: MBConvConfig, stochastic_depth_prob: float, norm_layer: Callable[..., nn.Module],
                 se_layer: Callable[..., nn.Module] = SqueezeExcitation) -> None:
        super().__init__()

        if not (1 <= cnf.stride <= 2):
            raise ValueError('illegal stride value')

        self.use_res_connect = cnf.stride == 1 and cnf.input_channels == cnf.out_channels

        layers: List[nn.Module] = []
        activation_layer = nn.SiLU

        # expand
        expanded_channels = cnf.adjust_channels(cnf.input_channels, cnf.expand_ratio)
        if expanded_channels != cnf.input_channels:
            layers.append(ConvBNActivation(cnf.input_channels, expanded_channels, kernel_size=1,
                                           norm_layer=norm_layer, activation_layer=activation_layer))

        # depthwise
        layers.append(ConvBNActivation(expanded_channels, expanded_channels, kernel_size=cnf.kernel,
                                       stride=cnf.stride, groups=expanded_channels,
                                       norm_layer=norm_layer, activation_layer=activation_layer))

        # squeeze and excitation
        squeeze_channels = max(1, cnf.input_channels // 4)
        layers.append(se_layer(expanded_channels, squeeze_channels))

        # project
        layers.append(ConvBNActivation(expanded_channels, cnf.out_channels, kernel_size=1, norm_layer=norm_layer,
                                       activation_layer=nn.Identity))

        self.block = nn.Sequential(*layers)
        self.stochastic_depth = StochasticDepth(stochastic_depth_prob, "row")
        self.out_channels = cnf.out_channels

    def forward(self, input: Tensor) -> Tensor:
        result = self.block(input)
        if self.use_res_connect:
            result = self.stochastic_depth(result)
            result += input
        return result


class EfficientNet(nn.Module):
    def __init__(
            self,
            inverted_residual_setting: List[MBConvConfig],
            dropout: float,
            stochastic_depth_prob: float = 0.2,
            num_classes: int = 1000,
            block: Optional[Callable[..., nn.Module]] = None,
            norm_layer: Optional[Callable[..., nn.Module]] = None,
            **kwargs: Any
    ) -> None:
        """
        EfficientNet main class

        Args:
            inverted_residual_setting (List[MBConvConfig]): Network structure
            dropout (float): The droupout probability
            stochastic_depth_prob (float): The stochastic depth probability
            num_classes (int): Number of classes
            block (Optional[Callable[..., nn.Module]]): Module specifying inverted residual building block for mobilenet
            norm_layer (Optional[Callable[..., nn.Module]]): Module specifying the normalization layer to use
        """
        super().__init__()

        if not inverted_residual_setting:
            raise ValueError("The inverted_residual_setting should not be empty")
        elif not (isinstance(inverted_residual_setting, Sequence) and
                  all([isinstance(s, MBConvConfig) for s in inverted_residual_setting])):
            raise TypeError("The inverted_residual_setting should be List[MBConvConfig]")

        if block is None:
            block = MBConv

        if norm_layer is None:
            norm_layer = nn.BatchNorm2d

        layers: List[nn.Module] = []

        # building first layer
        firstconv_output_channels = inverted_residual_setting[0].input_channels
        layers.append(ConvBNActivation(3, firstconv_output_channels, kernel_size=3, stride=2, norm_layer=norm_layer,
                                       activation_layer=nn.SiLU))

        # building inverted residual blocks
        total_stage_blocks = sum([cnf.num_layers for cnf in inverted_residual_setting])
        stage_block_id = 0
        for cnf in inverted_residual_setting:
            stage: List[nn.Module] = []
            for _ in range(cnf.num_layers):
                # copy to avoid modifications. shallow copy is enough
                block_cnf = copy.copy(cnf)

                # overwrite info if not the first conv in the stage
                if stage:
                    block_cnf.input_channels = block_cnf.out_channels
                    block_cnf.stride = 1

                # adjust stochastic depth probability based on the depth of the stage block
                sd_prob = stochastic_depth_prob * float(stage_block_id) / total_stage_blocks

                stage.append(block(block_cnf, sd_prob, norm_layer))
                stage_block_id += 1

            layers.append(nn.Sequential(*stage))

        # building last several layers
        lastconv_input_channels = inverted_residual_setting[-1].out_channels
        lastconv_output_channels = 4 * lastconv_input_channels
        layers.append(ConvBNActivation(lastconv_input_channels, lastconv_output_channels, kernel_size=1,
                                       norm_layer=norm_layer, activation_layer=nn.SiLU))

        self.features = nn.Sequential(*layers)
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.classifier = nn.Sequential(
            nn.Dropout(p=dropout, inplace=True),
            nn.Linear(lastconv_output_channels, num_classes),
        )

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                init_range = 1.0 / math.sqrt(m.out_features)
                nn.init.uniform_(m.weight, -init_range, init_range)
                nn.init.zeros_(m.bias)

    def _forward_impl(self, x: Tensor) -> Tensor:
        x = self.features(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)

        x = self.classifier(x)

        return x

    def forward(self, x: Tensor) -> Tensor:
        return self._forward_impl(x)


def _efficientnet_conf(width_mult: float, depth_mult: float, **kwargs: Any) -> List[MBConvConfig]:
    bneck_conf = partial(MBConvConfig, width_mult=width_mult, depth_mult=depth_mult)
    inverted_residual_setting = [
        bneck_conf(1, 3, 1, 32, 16, 1),
        bneck_conf(6, 3, 2, 16, 24, 2),
        bneck_conf(6, 5, 2, 24, 40, 2),
        bneck_conf(6, 3, 2, 40, 80, 3),
        bneck_conf(6, 5, 1, 80, 112, 3),
        bneck_conf(6, 5, 2, 112, 192, 4),
        bneck_conf(6, 3, 1, 192, 320, 1),
    ]
    return inverted_residual_setting


def _efficientnet_model(
    arch: str,
    inverted_residual_setting: List[MBConvConfig],
    dropout: float,
    pretrained: bool,
    progress: bool,
    **kwargs: Any
) -> EfficientNet:
    model = EfficientNet(inverted_residual_setting, dropout, **kwargs)
    if pretrained:
        if model_urls.get(arch, None) is None:
            raise ValueError("No checkpoint is available for model type {}".format(arch))
        state_dict = load_state_dict_from_url(model_urls[arch], progress=progress)
        model.load_state_dict(state_dict)
    return model


def efficientnet_b0(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> EfficientNet:
    """
    Constructs a EfficientNet B0 architecture from
    `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" <https://arxiv.org/abs/1905.11946>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    inverted_residual_setting = _efficientnet_conf(width_mult=1.0, depth_mult=1.0, **kwargs)
    return _efficientnet_model("efficientnet_b0", inverted_residual_setting, 0.2, pretrained, progress, **kwargs)


def efficientnet_b1(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> EfficientNet:
    """
    Constructs a EfficientNet B1 architecture from
    `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" <https://arxiv.org/abs/1905.11946>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    inverted_residual_setting = _efficientnet_conf(width_mult=1.0, depth_mult=1.1, **kwargs)
    return _efficientnet_model("efficientnet_b1", inverted_residual_setting, 0.2, pretrained, progress, **kwargs)


def efficientnet_b2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> EfficientNet:
    """
    Constructs a EfficientNet B2 architecture from
    `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" <https://arxiv.org/abs/1905.11946>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    inverted_residual_setting = _efficientnet_conf(width_mult=1.1, depth_mult=1.2, **kwargs)
    return _efficientnet_model("efficientnet_b2", inverted_residual_setting, 0.3, pretrained, progress, **kwargs)


def efficientnet_b3(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> EfficientNet:
    """
    Constructs a EfficientNet B3 architecture from
    `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" <https://arxiv.org/abs/1905.11946>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    inverted_residual_setting = _efficientnet_conf(width_mult=1.2, depth_mult=1.4, **kwargs)
    return _efficientnet_model("efficientnet_b3", inverted_residual_setting, 0.3, pretrained, progress, **kwargs)


def efficientnet_b4(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> EfficientNet:
    """
    Constructs a EfficientNet B4 architecture from
    `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" <https://arxiv.org/abs/1905.11946>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    inverted_residual_setting = _efficientnet_conf(width_mult=1.4, depth_mult=1.8, **kwargs)
    return _efficientnet_model("efficientnet_b4", inverted_residual_setting, 0.4, pretrained, progress, **kwargs)


def efficientnet_b5(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> EfficientNet:
    """
    Constructs a EfficientNet B5 architecture from
    `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" <https://arxiv.org/abs/1905.11946>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    inverted_residual_setting = _efficientnet_conf(width_mult=1.6, depth_mult=2.2, **kwargs)
    return _efficientnet_model("efficientnet_b5", inverted_residual_setting, 0.4, pretrained, progress,
                               norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.01), **kwargs)


def efficientnet_b6(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> EfficientNet:
    """
    Constructs a EfficientNet B6 architecture from
    `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" <https://arxiv.org/abs/1905.11946>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    inverted_residual_setting = _efficientnet_conf(width_mult=1.8, depth_mult=2.6, **kwargs)
    return _efficientnet_model("efficientnet_b6", inverted_residual_setting, 0.5, pretrained, progress,
                               norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.01), **kwargs)


def efficientnet_b7(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> EfficientNet:
    """
    Constructs a EfficientNet B7 architecture from
    `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" <https://arxiv.org/abs/1905.11946>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    inverted_residual_setting = _efficientnet_conf(width_mult=2.0, depth_mult=3.1, **kwargs)
    return _efficientnet_model("efficientnet_b7", inverted_residual_setting, 0.5, pretrained, progress,
                               norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.01), **kwargs)