__init__.py 6.04 KB
Newer Older
1
2
import torch

Zhicheng Yan's avatar
Zhicheng Yan committed
3
from ._video_opt import (
4
5
6
    Timebase,
    VideoMetaData,
    _HAS_VIDEO_OPT,
7
    _probe_video_from_file,
8
9
    _probe_video_from_memory,
    _read_video_from_file,
Zhicheng Yan's avatar
Zhicheng Yan committed
10
    _read_video_from_memory,
11
    _read_video_timestamps_from_file,
Zhicheng Yan's avatar
Zhicheng Yan committed
12
    _read_video_timestamps_from_memory,
13
14
15
16
17
)
from .video import (
    read_video,
    read_video_timestamps,
    write_video,
Zhicheng Yan's avatar
Zhicheng Yan committed
18
)
19
20
from .image import (
    decode_image,
So Uchida's avatar
So Uchida committed
21
22
    decode_jpeg,
    decode_png,
23
24
    encode_jpeg,
    encode_png,
So Uchida's avatar
So Uchida committed
25
26
27
28
    read_file,
    read_image,
    write_file,
    write_jpeg,
29
    write_png,
30
31
)

32

33
if _HAS_VIDEO_OPT:
34

35
36
    def _has_video_opt():
        return True
37
38


39
else:
40

41
42
    def _has_video_opt():
        return False
43
44


45
46
47
48
49
class VideoReader:
    """
    Fine-grained video-reading API.
    Supports frame-by-frame reading of various streams from a single video
    container.
50

51
    Example:
Bruno Korbar's avatar
Bruno Korbar committed
52
        The following examples creates a :mod:`VideoReader` object, seeks into 2s
53
54
55
        point, and returns a single frame::
                import torchvision
                video_path = "path_to_a_test_video"
56

57
58
                reader = torchvision.io.VideoReader(video_path, "video")
                reader.seek(2.0)
Bruno Korbar's avatar
Bruno Korbar committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
                frame = next(reader)

        :mod:`VideoReader` implements the iterable API, which makes it suitable to
        using it in conjunction with :mod:`itertools` for more advanced reading.
        As such, we can use a :mod:`VideoReader` instance inside for loops::
            reader.seek(2)
            for frame in reader:
                frames.append(frame['data'])
            # additionally, `seek` implements a fluent API, so we can do
            for frame in reader.seek(2):
                frames.append(frame['data'])
        With :mod:`itertools`, we can read all frames between 2 and 5 seconds with the
        following code::
            for frame in itertools.takewhile(lambda x: x['pts'] <= 5, reader.seek(2)):
                frames.append(frame['data'])
        and similarly, reading 10 frames after the 2s timestamp can be achieved
        as follows::
            for frame in itertools.islice(reader.seek(2), 10):
                frames.append(frame['data'])

    .. note::

        Each stream descriptor consists of two parts: stream type (e.g. 'video') and
        a unique stream id (which are determined by the video encoding).
        In this way, if the video contaner contains multiple
        streams of the same type, users can acces the one they want.
        If only stream type is passed, the decoder auto-detects first stream of that type.
86

87
    Args:
88

89
        path (string): Path to the video file in supported format
90

Bruno Korbar's avatar
Bruno Korbar committed
91
92
93
        stream (string, optional): descriptor of the required stream, followed by the stream id,
            in the format ``{stream_type}:{stream_id}``. Defaults to ``"video:0"``.
            Currently available options include ``['video', 'audio']``
94
    """
95

96
97
    def __init__(self, path, stream="video"):
        if not _has_video_opt():
98
99
100
101
102
103
            raise RuntimeError(
                "Not compiled with video_reader support, "
                + "to enable video_reader support, please install "
                + "ffmpeg (version 4.2 is currently supported) and"
                + "build torchvision from source."
            )
104
        self._c = torch.classes.torchvision.Video(path, stream)
105

106
    def __next__(self):
107
108
109
110
111
        """Decodes and returns the next frame of the current stream.
        Frames are encoded as a dict with mandatory
        data and pts fields, where data is a tensor, and pts is a
        presentation timestamp of the frame expressed in seconds
        as a float.
112

113
        Returns:
114
115
            (dict): a dictionary and containing decoded frame (``data``)
            and corresponding timestamp (``pts``) in seconds
116

117
118
119
120
        """
        frame, pts = self._c.next()
        if frame.numel() == 0:
            raise StopIteration
Bruno Korbar's avatar
Bruno Korbar committed
121
        return {"data": frame, "pts": pts}
122

123
124
    def __iter__(self):
        return self
125

126
127
    def seek(self, time_s: float):
        """Seek within current stream.
128

129
130
        Args:
            time_s (float): seek time in seconds
131

132
133
134
135
        .. note::
            Current implementation is the so-called precise seek. This
            means following seek, call to :mod:`next()` will return the
            frame with the exact timestamp if it exists or
Bruno Korbar's avatar
Bruno Korbar committed
136
            the first frame with timestamp larger than ``time_s``.
137
138
139
        """
        self._c.seek(time_s)
        return self
140

141
142
    def get_metadata(self):
        """Returns video metadata
143

144
145
146
147
        Returns:
            (dict): dictionary containing duration and frame rate for every stream
        """
        return self._c.get_metadata()
148

149
150
151
    def set_current_stream(self, stream: str):
        """Set current stream.
        Explicitly define the stream we are operating on.
152

153
        Args:
Bruno Korbar's avatar
Bruno Korbar committed
154
155
            stream (string): descriptor of the required stream. Defaults to ``"video:0"``
                Currently available stream types include ``['video', 'audio']``.
156
157
158
159
160
161
162
163
164
165
166
                Each descriptor consists of two parts: stream type (e.g. 'video') and
                a unique stream id (which are determined by video encoding).
                In this way, if the video contaner contains multiple
                streams of the same type, users can acces the one they want.
                If only stream type is passed, the decoder auto-detects first stream
                of that type and returns it.

        Returns:
            (bool): True on succes, False otherwise
        """
        return self._c.set_current_stream(stream)
167
168


169
__all__ = [
170
171
172
173
174
175
176
177
178
179
180
181
182
    "write_video",
    "read_video",
    "read_video_timestamps",
    "_read_video_from_file",
    "_read_video_timestamps_from_file",
    "_probe_video_from_file",
    "_read_video_from_memory",
    "_read_video_timestamps_from_memory",
    "_probe_video_from_memory",
    "_HAS_VIDEO_OPT",
    "_read_video_clip_from_memory",
    "_read_video_meta_data",
    "VideoMetaData",
183
    "Timebase",
184
    "decode_image",
So Uchida's avatar
So Uchida committed
185
186
    "decode_jpeg",
    "decode_png",
187
188
    "encode_jpeg",
    "encode_png",
So Uchida's avatar
So Uchida committed
189
190
191
192
    "read_file",
    "read_image",
    "write_file",
    "write_jpeg",
193
194
    "write_png",
    "Video",
195
]