densenet.py 6.69 KB
Newer Older
Geoff Pleiss's avatar
Geoff Pleiss committed
1
2
3
4
5
6
7
8
9
10
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
from collections import OrderedDict

__all__ = ['DenseNet', 'densenet121', 'densenet169', 'densenet201', 'densenet161']


model_urls = {
11
12
13
14
    'densenet121': 'https://download.pytorch.org/models/densenet121-a639ec97.pth',
    'densenet169': 'https://download.pytorch.org/models/densenet169-b2777c0a.pth',
    'densenet201': 'https://download.pytorch.org/models/densenet201-c1103571.pth',
    'densenet161': 'https://download.pytorch.org/models/densenet161-8d451a50.pth',
Geoff Pleiss's avatar
Geoff Pleiss committed
15
16
17
18
19
20
21
22
23
24
}


def densenet121(pretrained=False, **kwargs):
    r"""Densenet-121 model from
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
25
26
    model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16),
                     **kwargs)
Geoff Pleiss's avatar
Geoff Pleiss committed
27
28
29
30
31
32
33
34
35
36
37
38
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['densenet121']))
    return model


def densenet169(pretrained=False, **kwargs):
    r"""Densenet-169 model from
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
39
40
    model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 32, 32),
                     **kwargs)
Geoff Pleiss's avatar
Geoff Pleiss committed
41
42
43
44
45
46
47
48
49
50
51
52
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['densenet169']))
    return model


def densenet201(pretrained=False, **kwargs):
    r"""Densenet-201 model from
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
53
54
    model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 48, 32),
                     **kwargs)
Geoff Pleiss's avatar
Geoff Pleiss committed
55
56
57
58
59
60
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['densenet201']))
    return model


def densenet161(pretrained=False, **kwargs):
Furiously Curious's avatar
Furiously Curious committed
61
    r"""Densenet-161 model from
Geoff Pleiss's avatar
Geoff Pleiss committed
62
63
64
65
66
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
67
68
    model = DenseNet(num_init_features=96, growth_rate=48, block_config=(6, 12, 36, 24),
                     **kwargs)
Geoff Pleiss's avatar
Geoff Pleiss committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['densenet161']))
    return model


class _DenseLayer(nn.Sequential):
    def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
        super(_DenseLayer, self).__init__()
        self.add_module('norm.1', nn.BatchNorm2d(num_input_features)),
        self.add_module('relu.1', nn.ReLU(inplace=True)),
        self.add_module('conv.1', nn.Conv2d(num_input_features, bn_size *
                        growth_rate, kernel_size=1, stride=1, bias=False)),
        self.add_module('norm.2', nn.BatchNorm2d(bn_size * growth_rate)),
        self.add_module('relu.2', nn.ReLU(inplace=True)),
        self.add_module('conv.2', nn.Conv2d(bn_size * growth_rate, growth_rate,
                        kernel_size=3, stride=1, padding=1, bias=False)),
        self.drop_rate = drop_rate

    def forward(self, x):
        new_features = super(_DenseLayer, self).forward(x)
        if self.drop_rate > 0:
            new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
        return torch.cat([x, new_features], 1)


class _DenseBlock(nn.Sequential):
    def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
        super(_DenseBlock, self).__init__()
        for i in range(num_layers):
            layer = _DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate)
            self.add_module('denselayer%d' % (i + 1), layer)


class _Transition(nn.Sequential):
    def __init__(self, num_input_features, num_output_features):
        super(_Transition, self).__init__()
        self.add_module('norm', nn.BatchNorm2d(num_input_features))
        self.add_module('relu', nn.ReLU(inplace=True))
        self.add_module('conv', nn.Conv2d(num_input_features, num_output_features,
                                          kernel_size=1, stride=1, bias=False))
        self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2))


class DenseNet(nn.Module):
    r"""Densenet-BC model class, based on
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`

    Args:
        growth_rate (int) - how many filters to add each layer (`k` in paper)
        block_config (list of 4 ints) - how many layers in each pooling block
        num_init_features (int) - the number of filters to learn in the first convolution layer
        bn_size (int) - multiplicative factor for number of bottle neck layers
          (i.e. bn_size * k features in the bottleneck layer)
        drop_rate (float) - dropout rate after each dense layer
        num_classes (int) - number of classification classes
    """
    def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16),
                 num_init_features=64, bn_size=4, drop_rate=0, num_classes=1000):

        super(DenseNet, self).__init__()

        # First convolution
        self.features = nn.Sequential(OrderedDict([
            ('conv0', nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
            ('norm0', nn.BatchNorm2d(num_init_features)),
            ('relu0', nn.ReLU(inplace=True)),
            ('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),
        ]))

        # Each denseblock
        num_features = num_init_features
        for i, num_layers in enumerate(block_config):
            block = _DenseBlock(num_layers=num_layers, num_input_features=num_features,
                                bn_size=bn_size, growth_rate=growth_rate, drop_rate=drop_rate)
            self.features.add_module('denseblock%d' % (i + 1), block)
            num_features = num_features + num_layers * growth_rate
            if i != len(block_config) - 1:
146
                trans = _Transition(num_input_features=num_features, num_output_features=num_features // 2)
Geoff Pleiss's avatar
Geoff Pleiss committed
147
                self.features.add_module('transition%d' % (i + 1), trans)
148
                num_features = num_features // 2
Geoff Pleiss's avatar
Geoff Pleiss committed
149
150
151
152
153
154
155
156
157
158
159
160
161

        # Final batch norm
        self.features.add_module('norm5', nn.BatchNorm2d(num_features))

        # Linear layer
        self.classifier = nn.Linear(num_features, num_classes)

    def forward(self, x):
        features = self.features(x)
        out = F.relu(features, inplace=True)
        out = F.avg_pool2d(out, kernel_size=7).view(features.size(0), -1)
        out = self.classifier(out)
        return out