test_transforms_v2_consistency.py 50.4 KB
Newer Older
1
import enum
2
3
import importlib.machinery
import importlib.util
4
import inspect
5
import random
6
import re
7
from collections import defaultdict
8
from pathlib import Path
9

10
import numpy as np
11
import PIL.Image
12
import pytest
13
14

import torch
15
import torchvision.transforms.v2 as v2_transforms
16
from common_utils import (
17
    ArgsKwargs,
18
    assert_close,
19
20
21
22
23
    assert_equal,
    make_bounding_box,
    make_detection_mask,
    make_image,
    make_images,
24
    make_segmentation_mask,
25
)
26
from torch import nn
27
from torchvision import datapoints, transforms as legacy_transforms
28
from torchvision._utils import sequence_to_str
29

30
from torchvision.transforms import functional as legacy_F
31
32
33
from torchvision.transforms.v2 import functional as prototype_F
from torchvision.transforms.v2.functional import to_image_pil
from torchvision.transforms.v2.utils import query_spatial_size
34

35
DEFAULT_MAKE_IMAGES_KWARGS = dict(color_spaces=["RGB"], extra_dims=[(4,)])
36
37


38
39
40
41
42
43
44
45
46
class NotScriptableArgsKwargs(ArgsKwargs):
    """
    This class is used to mark parameters that render the transform non-scriptable. They still work in eager mode and
    thus will be tested there, but will be skipped by the JIT tests.
    """

    pass


47
48
class ConsistencyConfig:
    def __init__(
49
50
51
        self,
        prototype_cls,
        legacy_cls,
52
53
        # If no args_kwargs is passed, only the signature will be checked
        args_kwargs=(),
54
55
56
        make_images_kwargs=None,
        supports_pil=True,
        removed_params=(),
57
        closeness_kwargs=None,
58
59
60
    ):
        self.prototype_cls = prototype_cls
        self.legacy_cls = legacy_cls
61
        self.args_kwargs = args_kwargs
62
63
        self.make_images_kwargs = make_images_kwargs or DEFAULT_MAKE_IMAGES_KWARGS
        self.supports_pil = supports_pil
64
        self.removed_params = removed_params
65
        self.closeness_kwargs = closeness_kwargs or dict(rtol=0, atol=0)
66
67


68
69
70
71
# These are here since both the prototype and legacy transform need to be constructed with the same random parameters
LINEAR_TRANSFORMATION_MEAN = torch.rand(36)
LINEAR_TRANSFORMATION_MATRIX = torch.rand([LINEAR_TRANSFORMATION_MEAN.numel()] * 2)

72
73
CONSISTENCY_CONFIGS = [
    ConsistencyConfig(
74
        v2_transforms.Normalize,
75
76
77
78
79
80
81
82
        legacy_transforms.Normalize,
        [
            ArgsKwargs(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
        ],
        supports_pil=False,
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[torch.float]),
    ),
    ConsistencyConfig(
83
        v2_transforms.Resize,
84
85
        legacy_transforms.Resize,
        [
86
            NotScriptableArgsKwargs(32),
87
            ArgsKwargs([32]),
88
            ArgsKwargs((32, 29)),
89
90
            ArgsKwargs((31, 28), interpolation=v2_transforms.InterpolationMode.NEAREST),
            ArgsKwargs((33, 26), interpolation=v2_transforms.InterpolationMode.BICUBIC),
91
92
93
            ArgsKwargs((30, 27), interpolation=PIL.Image.NEAREST),
            ArgsKwargs((35, 29), interpolation=PIL.Image.BILINEAR),
            ArgsKwargs((34, 25), interpolation=PIL.Image.BICUBIC),
94
95
96
97
            NotScriptableArgsKwargs(31, max_size=32),
            ArgsKwargs([31], max_size=32),
            NotScriptableArgsKwargs(30, max_size=100),
            ArgsKwargs([31], max_size=32),
98
99
            ArgsKwargs((29, 32), antialias=False),
            ArgsKwargs((28, 31), antialias=True),
100
101
102
        ],
    ),
    ConsistencyConfig(
103
        v2_transforms.CenterCrop,
104
105
106
107
108
109
        legacy_transforms.CenterCrop,
        [
            ArgsKwargs(18),
            ArgsKwargs((18, 13)),
        ],
    ),
110
    ConsistencyConfig(
111
        v2_transforms.FiveCrop,
112
113
114
115
116
117
118
119
        legacy_transforms.FiveCrop,
        [
            ArgsKwargs(18),
            ArgsKwargs((18, 13)),
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, sizes=[(20, 19)]),
    ),
    ConsistencyConfig(
120
        v2_transforms.TenCrop,
121
122
123
124
        legacy_transforms.TenCrop,
        [
            ArgsKwargs(18),
            ArgsKwargs((18, 13)),
125
            ArgsKwargs(18, vertical_flip=True),
126
127
128
129
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, sizes=[(20, 19)]),
    ),
    ConsistencyConfig(
130
        v2_transforms.Pad,
131
132
        legacy_transforms.Pad,
        [
133
            NotScriptableArgsKwargs(3),
134
135
136
            ArgsKwargs([3]),
            ArgsKwargs([2, 3]),
            ArgsKwargs([3, 2, 1, 4]),
137
138
139
140
141
            NotScriptableArgsKwargs(5, fill=1, padding_mode="constant"),
            ArgsKwargs([5], fill=1, padding_mode="constant"),
            NotScriptableArgsKwargs(5, padding_mode="edge"),
            NotScriptableArgsKwargs(5, padding_mode="reflect"),
            NotScriptableArgsKwargs(5, padding_mode="symmetric"),
142
143
        ],
    ),
144
145
    *[
        ConsistencyConfig(
146
            v2_transforms.LinearTransformation,
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
            legacy_transforms.LinearTransformation,
            [
                ArgsKwargs(LINEAR_TRANSFORMATION_MATRIX.to(matrix_dtype), LINEAR_TRANSFORMATION_MEAN.to(matrix_dtype)),
            ],
            # Make sure that the product of the height, width and number of channels matches the number of elements in
            # `LINEAR_TRANSFORMATION_MEAN`. For example 2 * 6 * 3 == 4 * 3 * 3 == 36.
            make_images_kwargs=dict(
                DEFAULT_MAKE_IMAGES_KWARGS, sizes=[(2, 6), (4, 3)], color_spaces=["RGB"], dtypes=[image_dtype]
            ),
            supports_pil=False,
        )
        for matrix_dtype, image_dtype in [
            (torch.float32, torch.float32),
            (torch.float64, torch.float64),
            (torch.float32, torch.uint8),
            (torch.float64, torch.float32),
            (torch.float32, torch.float64),
        ]
    ],
166
    ConsistencyConfig(
167
        v2_transforms.Grayscale,
168
169
170
171
172
        legacy_transforms.Grayscale,
        [
            ArgsKwargs(num_output_channels=1),
            ArgsKwargs(num_output_channels=3),
        ],
173
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, color_spaces=["RGB", "GRAY"]),
174
175
        # Use default tolerances of `torch.testing.assert_close`
        closeness_kwargs=dict(rtol=None, atol=None),
176
    ),
177
    ConsistencyConfig(
178
        v2_transforms.ConvertDtype,
179
180
181
182
183
184
185
186
187
        legacy_transforms.ConvertImageDtype,
        [
            ArgsKwargs(torch.float16),
            ArgsKwargs(torch.bfloat16),
            ArgsKwargs(torch.float32),
            ArgsKwargs(torch.float64),
            ArgsKwargs(torch.uint8),
        ],
        supports_pil=False,
188
189
        # Use default tolerances of `torch.testing.assert_close`
        closeness_kwargs=dict(rtol=None, atol=None),
190
191
    ),
    ConsistencyConfig(
192
        v2_transforms.ToPILImage,
193
        legacy_transforms.ToPILImage,
194
        [NotScriptableArgsKwargs()],
195
196
        make_images_kwargs=dict(
            color_spaces=[
197
198
199
200
                "GRAY",
                "GRAY_ALPHA",
                "RGB",
                "RGBA",
201
202
203
204
205
206
            ],
            extra_dims=[()],
        ),
        supports_pil=False,
    ),
    ConsistencyConfig(
207
        v2_transforms.Lambda,
208
209
        legacy_transforms.Lambda,
        [
210
            NotScriptableArgsKwargs(lambda image: image / 2),
211
212
213
214
215
        ],
        # Technically, this also supports PIL, but it is overkill to write a function here that supports tensor and PIL
        # images given that the transform does nothing but call it anyway.
        supports_pil=False,
    ),
216
    ConsistencyConfig(
217
        v2_transforms.RandomHorizontalFlip,
218
219
220
221
222
223
224
        legacy_transforms.RandomHorizontalFlip,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
        ],
    ),
    ConsistencyConfig(
225
        v2_transforms.RandomVerticalFlip,
226
227
228
229
230
231
232
        legacy_transforms.RandomVerticalFlip,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
        ],
    ),
    ConsistencyConfig(
233
        v2_transforms.RandomEqualize,
234
235
236
237
238
239
240
241
        legacy_transforms.RandomEqualize,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[torch.uint8]),
    ),
    ConsistencyConfig(
242
        v2_transforms.RandomInvert,
243
244
245
246
247
248
249
        legacy_transforms.RandomInvert,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
        ],
    ),
    ConsistencyConfig(
250
        v2_transforms.RandomPosterize,
251
252
253
254
255
256
257
258
259
        legacy_transforms.RandomPosterize,
        [
            ArgsKwargs(p=0, bits=5),
            ArgsKwargs(p=1, bits=1),
            ArgsKwargs(p=1, bits=3),
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[torch.uint8]),
    ),
    ConsistencyConfig(
260
        v2_transforms.RandomSolarize,
261
262
263
264
265
266
267
        legacy_transforms.RandomSolarize,
        [
            ArgsKwargs(p=0, threshold=0.5),
            ArgsKwargs(p=1, threshold=0.3),
            ArgsKwargs(p=1, threshold=0.99),
        ],
    ),
268
269
    *[
        ConsistencyConfig(
270
            v2_transforms.RandomAutocontrast,
271
272
273
274
275
276
277
278
279
280
            legacy_transforms.RandomAutocontrast,
            [
                ArgsKwargs(p=0),
                ArgsKwargs(p=1),
            ],
            make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[dt]),
            closeness_kwargs=ckw,
        )
        for dt, ckw in [(torch.uint8, dict(atol=1, rtol=0)), (torch.float32, dict(rtol=None, atol=None))]
    ],
281
    ConsistencyConfig(
282
        v2_transforms.RandomAdjustSharpness,
283
284
285
        legacy_transforms.RandomAdjustSharpness,
        [
            ArgsKwargs(p=0, sharpness_factor=0.5),
286
            ArgsKwargs(p=1, sharpness_factor=0.2),
287
288
            ArgsKwargs(p=1, sharpness_factor=0.99),
        ],
289
        closeness_kwargs={"atol": 1e-6, "rtol": 1e-6},
290
291
    ),
    ConsistencyConfig(
292
        v2_transforms.RandomGrayscale,
293
294
295
296
297
        legacy_transforms.RandomGrayscale,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
        ],
298
299
300
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, color_spaces=["RGB", "GRAY"]),
        # Use default tolerances of `torch.testing.assert_close`
        closeness_kwargs=dict(rtol=None, atol=None),
301
302
    ),
    ConsistencyConfig(
303
        v2_transforms.RandomResizedCrop,
304
305
306
307
308
        legacy_transforms.RandomResizedCrop,
        [
            ArgsKwargs(16),
            ArgsKwargs(17, scale=(0.3, 0.7)),
            ArgsKwargs(25, ratio=(0.5, 1.5)),
309
310
            ArgsKwargs((31, 28), interpolation=v2_transforms.InterpolationMode.NEAREST),
            ArgsKwargs((33, 26), interpolation=v2_transforms.InterpolationMode.BICUBIC),
311
312
            ArgsKwargs((31, 28), interpolation=PIL.Image.NEAREST),
            ArgsKwargs((33, 26), interpolation=PIL.Image.BICUBIC),
313
314
315
316
317
            ArgsKwargs((29, 32), antialias=False),
            ArgsKwargs((28, 31), antialias=True),
        ],
    ),
    ConsistencyConfig(
318
        v2_transforms.RandomErasing,
319
320
321
322
323
324
325
326
327
328
329
330
331
        legacy_transforms.RandomErasing,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
            ArgsKwargs(p=1, scale=(0.3, 0.7)),
            ArgsKwargs(p=1, ratio=(0.5, 1.5)),
            ArgsKwargs(p=1, value=1),
            ArgsKwargs(p=1, value=(1, 2, 3)),
            ArgsKwargs(p=1, value="random"),
        ],
        supports_pil=False,
    ),
    ConsistencyConfig(
332
        v2_transforms.ColorJitter,
333
334
335
336
337
338
339
340
341
342
343
        legacy_transforms.ColorJitter,
        [
            ArgsKwargs(),
            ArgsKwargs(brightness=0.1),
            ArgsKwargs(brightness=(0.2, 0.3)),
            ArgsKwargs(contrast=0.4),
            ArgsKwargs(contrast=(0.5, 0.6)),
            ArgsKwargs(saturation=0.7),
            ArgsKwargs(saturation=(0.8, 0.9)),
            ArgsKwargs(hue=0.3),
            ArgsKwargs(hue=(-0.1, 0.2)),
344
            ArgsKwargs(brightness=0.1, contrast=0.4, saturation=0.5, hue=0.3),
345
        ],
346
        closeness_kwargs={"atol": 1e-5, "rtol": 1e-5},
347
    ),
348
349
    *[
        ConsistencyConfig(
350
            v2_transforms.ElasticTransform,
351
352
353
354
355
356
357
            legacy_transforms.ElasticTransform,
            [
                ArgsKwargs(),
                ArgsKwargs(alpha=20.0),
                ArgsKwargs(alpha=(15.3, 27.2)),
                ArgsKwargs(sigma=3.0),
                ArgsKwargs(sigma=(2.5, 3.9)),
358
359
                ArgsKwargs(interpolation=v2_transforms.InterpolationMode.NEAREST),
                ArgsKwargs(interpolation=v2_transforms.InterpolationMode.BICUBIC),
360
361
                ArgsKwargs(interpolation=PIL.Image.NEAREST),
                ArgsKwargs(interpolation=PIL.Image.BICUBIC),
362
363
364
365
366
367
368
369
370
371
                ArgsKwargs(fill=1),
            ],
            # ElasticTransform needs larger images to avoid the needed internal padding being larger than the actual image
            make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, sizes=[(163, 163), (72, 333), (313, 95)], dtypes=[dt]),
            # We updated gaussian blur kernel generation with a faster and numerically more stable version
            # This brings float32 accumulation visible in elastic transform -> we need to relax consistency tolerance
            closeness_kwargs=ckw,
        )
        for dt, ckw in [(torch.uint8, {"rtol": 1e-1, "atol": 1}), (torch.float32, {"rtol": 1e-2, "atol": 1e-3})]
    ],
372
    ConsistencyConfig(
373
        v2_transforms.GaussianBlur,
374
375
376
377
378
379
380
        legacy_transforms.GaussianBlur,
        [
            ArgsKwargs(kernel_size=3),
            ArgsKwargs(kernel_size=(1, 5)),
            ArgsKwargs(kernel_size=3, sigma=0.7),
            ArgsKwargs(kernel_size=5, sigma=(0.3, 1.4)),
        ],
381
        closeness_kwargs={"rtol": 1e-5, "atol": 1e-5},
382
383
    ),
    ConsistencyConfig(
384
        v2_transforms.RandomAffine,
385
386
387
388
389
390
391
392
393
394
        legacy_transforms.RandomAffine,
        [
            ArgsKwargs(degrees=30.0),
            ArgsKwargs(degrees=(-20.0, 10.0)),
            ArgsKwargs(degrees=0.0, translate=(0.4, 0.6)),
            ArgsKwargs(degrees=0.0, scale=(0.3, 0.8)),
            ArgsKwargs(degrees=0.0, shear=13),
            ArgsKwargs(degrees=0.0, shear=(8, 17)),
            ArgsKwargs(degrees=0.0, shear=(4, 5, 4, 13)),
            ArgsKwargs(degrees=(-20.0, 10.0), translate=(0.4, 0.6), scale=(0.3, 0.8), shear=(4, 5, 4, 13)),
395
            ArgsKwargs(degrees=30.0, interpolation=v2_transforms.InterpolationMode.NEAREST),
396
            ArgsKwargs(degrees=30.0, interpolation=PIL.Image.NEAREST),
397
398
399
400
            ArgsKwargs(degrees=30.0, fill=1),
            ArgsKwargs(degrees=30.0, fill=(2, 3, 4)),
            ArgsKwargs(degrees=30.0, center=(0, 0)),
        ],
401
        removed_params=["fillcolor", "resample"],
402
403
    ),
    ConsistencyConfig(
404
        v2_transforms.RandomCrop,
405
406
407
408
        legacy_transforms.RandomCrop,
        [
            ArgsKwargs(12),
            ArgsKwargs((15, 17)),
409
410
            NotScriptableArgsKwargs(11, padding=1),
            ArgsKwargs(11, padding=[1]),
411
412
413
414
            ArgsKwargs((8, 13), padding=(2, 3)),
            ArgsKwargs((14, 9), padding=(0, 2, 1, 0)),
            ArgsKwargs(36, pad_if_needed=True),
            ArgsKwargs((7, 8), fill=1),
415
            NotScriptableArgsKwargs(5, fill=(1, 2, 3)),
416
            ArgsKwargs(12),
417
            NotScriptableArgsKwargs(15, padding=2, padding_mode="edge"),
418
419
420
421
422
423
            ArgsKwargs(17, padding=(1, 0), padding_mode="reflect"),
            ArgsKwargs(8, padding=(3, 0, 0, 1), padding_mode="symmetric"),
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, sizes=[(26, 26), (18, 33), (29, 22)]),
    ),
    ConsistencyConfig(
424
        v2_transforms.RandomPerspective,
425
426
427
428
429
        legacy_transforms.RandomPerspective,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
            ArgsKwargs(p=1, distortion_scale=0.3),
430
            ArgsKwargs(p=1, distortion_scale=0.2, interpolation=v2_transforms.InterpolationMode.NEAREST),
431
            ArgsKwargs(p=1, distortion_scale=0.2, interpolation=PIL.Image.NEAREST),
432
433
434
            ArgsKwargs(p=1, distortion_scale=0.1, fill=1),
            ArgsKwargs(p=1, distortion_scale=0.4, fill=(1, 2, 3)),
        ],
435
        closeness_kwargs={"atol": None, "rtol": None},
436
437
    ),
    ConsistencyConfig(
438
        v2_transforms.RandomRotation,
439
440
441
442
        legacy_transforms.RandomRotation,
        [
            ArgsKwargs(degrees=30.0),
            ArgsKwargs(degrees=(-20.0, 10.0)),
443
            ArgsKwargs(degrees=30.0, interpolation=v2_transforms.InterpolationMode.BILINEAR),
444
            ArgsKwargs(degrees=30.0, interpolation=PIL.Image.BILINEAR),
445
446
447
448
449
            ArgsKwargs(degrees=30.0, expand=True),
            ArgsKwargs(degrees=30.0, center=(0, 0)),
            ArgsKwargs(degrees=30.0, fill=1),
            ArgsKwargs(degrees=30.0, fill=(1, 2, 3)),
        ],
450
        removed_params=["resample"],
451
    ),
452
    ConsistencyConfig(
453
        v2_transforms.PILToTensor,
454
455
456
        legacy_transforms.PILToTensor,
    ),
    ConsistencyConfig(
457
        v2_transforms.ToTensor,
458
459
460
        legacy_transforms.ToTensor,
    ),
    ConsistencyConfig(
461
        v2_transforms.Compose,
462
463
464
        legacy_transforms.Compose,
    ),
    ConsistencyConfig(
465
        v2_transforms.RandomApply,
466
467
468
        legacy_transforms.RandomApply,
    ),
    ConsistencyConfig(
469
        v2_transforms.RandomChoice,
470
471
472
        legacy_transforms.RandomChoice,
    ),
    ConsistencyConfig(
473
        v2_transforms.RandomOrder,
474
475
476
        legacy_transforms.RandomOrder,
    ),
    ConsistencyConfig(
477
        v2_transforms.AugMix,
478
479
480
        legacy_transforms.AugMix,
    ),
    ConsistencyConfig(
481
        v2_transforms.AutoAugment,
482
483
484
        legacy_transforms.AutoAugment,
    ),
    ConsistencyConfig(
485
        v2_transforms.RandAugment,
486
487
488
        legacy_transforms.RandAugment,
    ),
    ConsistencyConfig(
489
        v2_transforms.TrivialAugmentWide,
490
491
        legacy_transforms.TrivialAugmentWide,
    ),
492
493
494
]


495
496
def test_automatic_coverage():
    available = {
497
498
        name
        for name, obj in legacy_transforms.__dict__.items()
499
        if not name.startswith("_") and isinstance(obj, type) and not issubclass(obj, enum.Enum)
500
501
    }

502
    checked = {config.legacy_cls.__name__ for config in CONSISTENCY_CONFIGS}
503

504
    missing = available - checked
505
506
507
508
509
510
511
    if missing:
        raise AssertionError(
            f"The prototype transformations {sequence_to_str(sorted(missing), separate_last='and ')} "
            f"are not checked for consistency although a legacy counterpart exists."
        )


512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
@pytest.mark.parametrize("config", CONSISTENCY_CONFIGS, ids=lambda config: config.legacy_cls.__name__)
def test_signature_consistency(config):
    legacy_params = dict(inspect.signature(config.legacy_cls).parameters)
    prototype_params = dict(inspect.signature(config.prototype_cls).parameters)

    for param in config.removed_params:
        legacy_params.pop(param, None)

    missing = legacy_params.keys() - prototype_params.keys()
    if missing:
        raise AssertionError(
            f"The prototype transform does not support the parameters "
            f"{sequence_to_str(sorted(missing), separate_last='and ')}, but the legacy transform does. "
            f"If that is intentional, e.g. pending deprecation, please add the parameters to the `removed_params` on "
            f"the `ConsistencyConfig`."
        )

    extra = prototype_params.keys() - legacy_params.keys()
530
531
532
533
534
535
    extra_without_default = {
        param
        for param in extra
        if prototype_params[param].default is inspect.Parameter.empty
        and prototype_params[param].kind not in {inspect.Parameter.VAR_POSITIONAL, inspect.Parameter.VAR_KEYWORD}
    }
536
537
    if extra_without_default:
        raise AssertionError(
538
539
540
            f"The prototype transform requires the parameters "
            f"{sequence_to_str(sorted(extra_without_default), separate_last='and ')}, but the legacy transform does "
            f"not. Please add a default value."
541
542
        )

543
544
545
546
547
548
    legacy_signature = list(legacy_params.keys())
    # Since we made sure that we don't have any extra parameters without default above, we clamp the prototype signature
    # to the same number of parameters as the legacy one
    prototype_signature = list(prototype_params.keys())[: len(legacy_signature)]

    assert prototype_signature == legacy_signature
549
550


551
552
553
def check_call_consistency(
    prototype_transform, legacy_transform, images=None, supports_pil=True, closeness_kwargs=None
):
554
555
    if images is None:
        images = make_images(**DEFAULT_MAKE_IMAGES_KWARGS)
556

557
558
    closeness_kwargs = closeness_kwargs or dict()

559
560
    for image in images:
        image_repr = f"[{tuple(image.shape)}, {str(image.dtype).rsplit('.')[-1]}]"
561
562
563

        image_tensor = torch.Tensor(image)
        try:
564
            torch.manual_seed(0)
565
            output_legacy_tensor = legacy_transform(image_tensor)
566
567
        except Exception as exc:
            raise pytest.UsageError(
568
                f"Transforming a tensor image {image_repr} failed in the legacy transform with the "
569
                f"error above. This means that you need to specify the parameters passed to `make_images` through the "
570
571
572
573
                "`make_images_kwargs` of the `ConsistencyConfig`."
            ) from exc

        try:
574
            torch.manual_seed(0)
575
            output_prototype_tensor = prototype_transform(image_tensor)
576
577
        except Exception as exc:
            raise AssertionError(
578
                f"Transforming a tensor image with shape {image_repr} failed in the prototype transform with "
579
580
                f"the error above. This means there is a consistency bug either in `_get_params` or in the "
                f"`is_simple_tensor` path in `_transform`."
581
582
            ) from exc

583
        assert_close(
584
585
586
            output_prototype_tensor,
            output_legacy_tensor,
            msg=lambda msg: f"Tensor image consistency check failed with: \n\n{msg}",
587
            **closeness_kwargs,
588
589
590
        )

        try:
591
            torch.manual_seed(0)
592
            output_prototype_image = prototype_transform(image)
593
594
        except Exception as exc:
            raise AssertionError(
595
                f"Transforming a image datapoint with shape {image_repr} failed in the prototype transform with "
596
                f"the error above. This means there is a consistency bug either in `_get_params` or in the "
597
                f"`datapoints.Image` path in `_transform`."
598
599
            ) from exc

600
        assert_close(
601
            output_prototype_image,
602
            output_prototype_tensor,
603
            msg=lambda msg: f"Output for datapoint and tensor images is not equal: \n\n{msg}",
604
            **closeness_kwargs,
605
606
        )

607
608
609
        if image.ndim == 3 and supports_pil:
            image_pil = to_image_pil(image)

610
            try:
611
                torch.manual_seed(0)
612
                output_legacy_pil = legacy_transform(image_pil)
613
614
            except Exception as exc:
                raise pytest.UsageError(
615
                    f"Transforming a PIL image with shape {image_repr} failed in the legacy transform with the "
616
617
618
619
620
                    f"error above. If this transform does not support PIL images, set `supports_pil=False` on the "
                    "`ConsistencyConfig`. "
                ) from exc

            try:
621
                torch.manual_seed(0)
622
                output_prototype_pil = prototype_transform(image_pil)
623
624
            except Exception as exc:
                raise AssertionError(
625
                    f"Transforming a PIL image with shape {image_repr} failed in the prototype transform with "
626
627
628
629
                    f"the error above. This means there is a consistency bug either in `_get_params` or in the "
                    f"`PIL.Image.Image` path in `_transform`."
                ) from exc

630
            assert_close(
631
632
                output_prototype_pil,
                output_legacy_pil,
633
                msg=lambda msg: f"PIL image consistency check failed with: \n\n{msg}",
634
                **closeness_kwargs,
635
            )
636
637


638
@pytest.mark.parametrize(
639
640
    ("config", "args_kwargs"),
    [
641
642
643
        pytest.param(
            config, args_kwargs, id=f"{config.legacy_cls.__name__}-{idx:0{len(str(len(config.args_kwargs)))}d}"
        )
644
        for config in CONSISTENCY_CONFIGS
645
        for idx, args_kwargs in enumerate(config.args_kwargs)
646
    ],
647
)
648
@pytest.mark.filterwarnings("ignore")
649
def test_call_consistency(config, args_kwargs):
650
651
652
    args, kwargs = args_kwargs

    try:
653
        legacy_transform = config.legacy_cls(*args, **kwargs)
654
655
656
657
658
659
660
    except Exception as exc:
        raise pytest.UsageError(
            f"Initializing the legacy transform failed with the error above. "
            f"Please correct the `ArgsKwargs({args_kwargs})` in the `ConsistencyConfig`."
        ) from exc

    try:
661
        prototype_transform = config.prototype_cls(*args, **kwargs)
662
663
664
665
666
667
    except Exception as exc:
        raise AssertionError(
            "Initializing the prototype transform failed with the error above. "
            "This means there is a consistency bug in the constructor."
        ) from exc

668
669
670
671
672
    check_call_consistency(
        prototype_transform,
        legacy_transform,
        images=make_images(**config.make_images_kwargs),
        supports_pil=config.supports_pil,
673
        closeness_kwargs=config.closeness_kwargs,
674
675
676
    )


677
678
679
680
681
682
683
684
685
get_params_parametrization = pytest.mark.parametrize(
    ("config", "get_params_args_kwargs"),
    [
        pytest.param(
            next(config for config in CONSISTENCY_CONFIGS if config.prototype_cls is transform_cls),
            get_params_args_kwargs,
            id=transform_cls.__name__,
        )
        for transform_cls, get_params_args_kwargs in [
686
687
688
689
690
            (v2_transforms.RandomResizedCrop, ArgsKwargs(make_image(), scale=[0.3, 0.7], ratio=[0.5, 1.5])),
            (v2_transforms.RandomErasing, ArgsKwargs(make_image(), scale=(0.3, 0.7), ratio=(0.5, 1.5))),
            (v2_transforms.ColorJitter, ArgsKwargs(brightness=None, contrast=None, saturation=None, hue=None)),
            (v2_transforms.ElasticTransform, ArgsKwargs(alpha=[15.3, 27.2], sigma=[2.5, 3.9], size=[17, 31])),
            (v2_transforms.GaussianBlur, ArgsKwargs(0.3, 1.4)),
691
            (
692
                v2_transforms.RandomAffine,
693
694
                ArgsKwargs(degrees=[-20.0, 10.0], translate=None, scale_ranges=None, shears=None, img_size=[15, 29]),
            ),
695
696
697
698
            (v2_transforms.RandomCrop, ArgsKwargs(make_image(size=(61, 47)), output_size=(19, 25))),
            (v2_transforms.RandomPerspective, ArgsKwargs(23, 17, 0.5)),
            (v2_transforms.RandomRotation, ArgsKwargs(degrees=[-20.0, 10.0])),
            (v2_transforms.AutoAugment, ArgsKwargs(5)),
699
700
        ]
    ],
701
)
702
703


704
@get_params_parametrization
705
def test_get_params_alias(config, get_params_args_kwargs):
706
707
    assert config.prototype_cls.get_params is config.legacy_cls.get_params

708
709
710
711
712
    if not config.args_kwargs:
        return
    args, kwargs = config.args_kwargs[0]
    legacy_transform = config.legacy_cls(*args, **kwargs)
    prototype_transform = config.prototype_cls(*args, **kwargs)
713

714
715
716
    assert prototype_transform.get_params is legacy_transform.get_params


717
@get_params_parametrization
718
719
720
721
722
723
724
725
726
def test_get_params_jit(config, get_params_args_kwargs):
    get_params_args, get_params_kwargs = get_params_args_kwargs

    torch.jit.script(config.prototype_cls.get_params)(*get_params_args, **get_params_kwargs)

    if not config.args_kwargs:
        return
    args, kwargs = config.args_kwargs[0]
    transform = config.prototype_cls(*args, **kwargs)
727

728
    torch.jit.script(transform.get_params)(*get_params_args, **get_params_kwargs)
729
730


731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
@pytest.mark.parametrize(
    ("config", "args_kwargs"),
    [
        pytest.param(
            config, args_kwargs, id=f"{config.legacy_cls.__name__}-{idx:0{len(str(len(config.args_kwargs)))}d}"
        )
        for config in CONSISTENCY_CONFIGS
        for idx, args_kwargs in enumerate(config.args_kwargs)
        if not isinstance(args_kwargs, NotScriptableArgsKwargs)
    ],
)
def test_jit_consistency(config, args_kwargs):
    args, kwargs = args_kwargs

    prototype_transform_eager = config.prototype_cls(*args, **kwargs)
    legacy_transform_eager = config.legacy_cls(*args, **kwargs)

    legacy_transform_scripted = torch.jit.script(legacy_transform_eager)
    prototype_transform_scripted = torch.jit.script(prototype_transform_eager)

    for image in make_images(**config.make_images_kwargs):
        image = image.as_subclass(torch.Tensor)

        torch.manual_seed(0)
        output_legacy_scripted = legacy_transform_scripted(image)

        torch.manual_seed(0)
        output_prototype_scripted = prototype_transform_scripted(image)

        assert_close(output_prototype_scripted, output_legacy_scripted, **config.closeness_kwargs)


763
764
765
766
767
768
769
770
771
772
class TestContainerTransforms:
    """
    Since we are testing containers here, we also need some transforms to wrap. Thus, testing a container transform for
    consistency automatically tests the wrapped transforms consistency.

    Instead of complicated mocking or creating custom transforms just for these tests, here we use deterministic ones
    that were already tested for consistency above.
    """

    def test_compose(self):
773
        prototype_transform = v2_transforms.Compose(
774
            [
775
776
                v2_transforms.Resize(256),
                v2_transforms.CenterCrop(224),
777
778
779
780
781
782
783
784
785
            ]
        )
        legacy_transform = legacy_transforms.Compose(
            [
                legacy_transforms.Resize(256),
                legacy_transforms.CenterCrop(224),
            ]
        )

786
        check_call_consistency(prototype_transform, legacy_transform)
787
788

    @pytest.mark.parametrize("p", [0, 0.1, 0.5, 0.9, 1])
789
790
    @pytest.mark.parametrize("sequence_type", [list, nn.ModuleList])
    def test_random_apply(self, p, sequence_type):
791
        prototype_transform = v2_transforms.RandomApply(
792
793
            sequence_type(
                [
794
795
                    v2_transforms.Resize(256),
                    v2_transforms.CenterCrop(224),
796
797
                ]
            ),
798
799
800
            p=p,
        )
        legacy_transform = legacy_transforms.RandomApply(
801
802
803
804
805
806
            sequence_type(
                [
                    legacy_transforms.Resize(256),
                    legacy_transforms.CenterCrop(224),
                ]
            ),
807
808
809
            p=p,
        )

810
        check_call_consistency(prototype_transform, legacy_transform)
811

812
813
814
815
816
        if sequence_type is nn.ModuleList:
            # quick and dirty test that it is jit-scriptable
            scripted = torch.jit.script(prototype_transform)
            scripted(torch.rand(1, 3, 300, 300))

817
    # We can't test other values for `p` since the random parameter generation is different
818
819
    @pytest.mark.parametrize("probabilities", [(0, 1), (1, 0)])
    def test_random_choice(self, probabilities):
820
        prototype_transform = v2_transforms.RandomChoice(
821
            [
822
                v2_transforms.Resize(256),
823
824
                legacy_transforms.CenterCrop(224),
            ],
825
            probabilities=probabilities,
826
827
828
829
830
831
        )
        legacy_transform = legacy_transforms.RandomChoice(
            [
                legacy_transforms.Resize(256),
                legacy_transforms.CenterCrop(224),
            ],
832
            p=probabilities,
833
834
        )

835
        check_call_consistency(prototype_transform, legacy_transform)
836
837


838
839
class TestToTensorTransforms:
    def test_pil_to_tensor(self):
840
        prototype_transform = v2_transforms.PILToTensor()
841
842
        legacy_transform = legacy_transforms.PILToTensor()

843
844
845
846
847
848
        for image in make_images(extra_dims=[()]):
            image_pil = to_image_pil(image)

            assert_equal(prototype_transform(image_pil), legacy_transform(image_pil))

    def test_to_tensor(self):
849
        with pytest.warns(UserWarning, match=re.escape("The transform `ToTensor()` is deprecated")):
850
            prototype_transform = v2_transforms.ToTensor()
851
852
        legacy_transform = legacy_transforms.ToTensor()

853
854
855
856
857
858
        for image in make_images(extra_dims=[()]):
            image_pil = to_image_pil(image)
            image_numpy = np.array(image_pil)

            assert_equal(prototype_transform(image_pil), legacy_transform(image_pil))
            assert_equal(prototype_transform(image_numpy), legacy_transform(image_numpy))
859
860
861
862
863
864
865
866


class TestAATransforms:
    @pytest.mark.parametrize(
        "inpt",
        [
            torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8),
            PIL.Image.new("RGB", (256, 256), 123),
867
            datapoints.Image(torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8)),
868
869
870
871
        ],
    )
    @pytest.mark.parametrize(
        "interpolation",
872
        [
873
874
            v2_transforms.InterpolationMode.NEAREST,
            v2_transforms.InterpolationMode.BILINEAR,
875
876
            PIL.Image.NEAREST,
        ],
877
878
879
    )
    def test_randaug(self, inpt, interpolation, mocker):
        t_ref = legacy_transforms.RandAugment(interpolation=interpolation, num_ops=1)
880
        t = v2_transforms.RandAugment(interpolation=interpolation, num_ops=1)
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901

        le = len(t._AUGMENTATION_SPACE)
        keys = list(t._AUGMENTATION_SPACE.keys())
        randint_values = []
        for i in range(le):
            # Stable API, op_index random call
            randint_values.append(i)
            # Stable API, if signed there is another random call
            if t._AUGMENTATION_SPACE[keys[i]][1]:
                randint_values.append(0)
            # New API, _get_random_item
            randint_values.append(i)
        randint_values = iter(randint_values)

        mocker.patch("torch.randint", side_effect=lambda *arg, **kwargs: torch.tensor(next(randint_values)))
        mocker.patch("torch.rand", return_value=1.0)

        for i in range(le):
            expected_output = t_ref(inpt)
            output = t(inpt)

902
            assert_close(expected_output, output, atol=1, rtol=0.1)
903
904
905
906
907
908

    @pytest.mark.parametrize(
        "inpt",
        [
            torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8),
            PIL.Image.new("RGB", (256, 256), 123),
909
            datapoints.Image(torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8)),
910
911
912
913
        ],
    )
    @pytest.mark.parametrize(
        "interpolation",
914
        [
915
916
            v2_transforms.InterpolationMode.NEAREST,
            v2_transforms.InterpolationMode.BILINEAR,
917
918
            PIL.Image.NEAREST,
        ],
919
920
921
    )
    def test_trivial_aug(self, inpt, interpolation, mocker):
        t_ref = legacy_transforms.TrivialAugmentWide(interpolation=interpolation)
922
        t = v2_transforms.TrivialAugmentWide(interpolation=interpolation)
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953

        le = len(t._AUGMENTATION_SPACE)
        keys = list(t._AUGMENTATION_SPACE.keys())
        randint_values = []
        for i in range(le):
            # Stable API, op_index random call
            randint_values.append(i)
            key = keys[i]
            # Stable API, random magnitude
            aug_op = t._AUGMENTATION_SPACE[key]
            magnitudes = aug_op[0](2, 0, 0)
            if magnitudes is not None:
                randint_values.append(5)
            # Stable API, if signed there is another random call
            if aug_op[1]:
                randint_values.append(0)
            # New API, _get_random_item
            randint_values.append(i)
            # New API, random magnitude
            if magnitudes is not None:
                randint_values.append(5)

        randint_values = iter(randint_values)

        mocker.patch("torch.randint", side_effect=lambda *arg, **kwargs: torch.tensor(next(randint_values)))
        mocker.patch("torch.rand", return_value=1.0)

        for _ in range(le):
            expected_output = t_ref(inpt)
            output = t(inpt)

954
            assert_close(expected_output, output, atol=1, rtol=0.1)
955
956
957
958
959
960

    @pytest.mark.parametrize(
        "inpt",
        [
            torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8),
            PIL.Image.new("RGB", (256, 256), 123),
961
            datapoints.Image(torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8)),
962
963
964
965
        ],
    )
    @pytest.mark.parametrize(
        "interpolation",
966
        [
967
968
            v2_transforms.InterpolationMode.NEAREST,
            v2_transforms.InterpolationMode.BILINEAR,
969
970
            PIL.Image.NEAREST,
        ],
971
972
973
974
    )
    def test_augmix(self, inpt, interpolation, mocker):
        t_ref = legacy_transforms.AugMix(interpolation=interpolation, mixture_width=1, chain_depth=1)
        t_ref._sample_dirichlet = lambda t: t.softmax(dim=-1)
975
        t = v2_transforms.AugMix(interpolation=interpolation, mixture_width=1, chain_depth=1)
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
        t._sample_dirichlet = lambda t: t.softmax(dim=-1)

        le = len(t._AUGMENTATION_SPACE)
        keys = list(t._AUGMENTATION_SPACE.keys())
        randint_values = []
        for i in range(le):
            # Stable API, op_index random call
            randint_values.append(i)
            key = keys[i]
            # Stable API, random magnitude
            aug_op = t._AUGMENTATION_SPACE[key]
            magnitudes = aug_op[0](2, 0, 0)
            if magnitudes is not None:
                randint_values.append(5)
            # Stable API, if signed there is another random call
            if aug_op[1]:
                randint_values.append(0)
            # New API, _get_random_item
            randint_values.append(i)
            # New API, random magnitude
            if magnitudes is not None:
                randint_values.append(5)

        randint_values = iter(randint_values)

        mocker.patch("torch.randint", side_effect=lambda *arg, **kwargs: torch.tensor(next(randint_values)))
        mocker.patch("torch.rand", return_value=1.0)

        expected_output = t_ref(inpt)
        output = t(inpt)

        assert_equal(expected_output, output)

    @pytest.mark.parametrize(
        "inpt",
        [
            torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8),
            PIL.Image.new("RGB", (256, 256), 123),
1014
            datapoints.Image(torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8)),
1015
1016
1017
1018
        ],
    )
    @pytest.mark.parametrize(
        "interpolation",
1019
        [
1020
1021
            v2_transforms.InterpolationMode.NEAREST,
            v2_transforms.InterpolationMode.BILINEAR,
1022
1023
            PIL.Image.NEAREST,
        ],
1024
1025
1026
1027
    )
    def test_aa(self, inpt, interpolation):
        aa_policy = legacy_transforms.AutoAugmentPolicy("imagenet")
        t_ref = legacy_transforms.AutoAugment(aa_policy, interpolation=interpolation)
1028
        t = v2_transforms.AutoAugment(aa_policy, interpolation=interpolation)
1029
1030
1031
1032
1033
1034
1035
1036

        torch.manual_seed(12)
        expected_output = t_ref(inpt)

        torch.manual_seed(12)
        output = t(inpt)

        assert_equal(expected_output, output)
1037
1038


1039
def import_transforms_from_references(reference):
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
    HERE = Path(__file__).parent
    PROJECT_ROOT = HERE.parent

    loader = importlib.machinery.SourceFileLoader(
        "transforms", str(PROJECT_ROOT / "references" / reference / "transforms.py")
    )
    spec = importlib.util.spec_from_loader("transforms", loader)
    module = importlib.util.module_from_spec(spec)
    loader.exec_module(module)
    return module
1050
1051
1052


det_transforms = import_transforms_from_references("detection")
1053
1054
1055
1056
1057
1058
1059


class TestRefDetTransforms:
    def make_datapoints(self, with_mask=True):
        size = (600, 800)
        num_objects = 22

1060
1061
1062
        def make_label(extra_dims, categories):
            return torch.randint(categories, extra_dims, dtype=torch.int64)

1063
        pil_image = to_image_pil(make_image(size=size, color_space="RGB"))
1064
        target = {
1065
            "boxes": make_bounding_box(spatial_size=size, format="XYXY", extra_dims=(num_objects,), dtype=torch.float),
1066
1067
1068
1069
1070
1071
1072
            "labels": make_label(extra_dims=(num_objects,), categories=80),
        }
        if with_mask:
            target["masks"] = make_detection_mask(size=size, num_objects=num_objects, dtype=torch.long)

        yield (pil_image, target)

1073
        tensor_image = torch.Tensor(make_image(size=size, color_space="RGB"))
1074
        target = {
1075
            "boxes": make_bounding_box(spatial_size=size, format="XYXY", extra_dims=(num_objects,), dtype=torch.float),
1076
1077
1078
1079
1080
1081
1082
            "labels": make_label(extra_dims=(num_objects,), categories=80),
        }
        if with_mask:
            target["masks"] = make_detection_mask(size=size, num_objects=num_objects, dtype=torch.long)

        yield (tensor_image, target)

1083
        datapoint_image = make_image(size=size, color_space="RGB")
1084
        target = {
1085
            "boxes": make_bounding_box(spatial_size=size, format="XYXY", extra_dims=(num_objects,), dtype=torch.float),
1086
1087
1088
1089
1090
            "labels": make_label(extra_dims=(num_objects,), categories=80),
        }
        if with_mask:
            target["masks"] = make_detection_mask(size=size, num_objects=num_objects, dtype=torch.long)

1091
        yield (datapoint_image, target)
1092
1093
1094
1095

    @pytest.mark.parametrize(
        "t_ref, t, data_kwargs",
        [
1096
            (det_transforms.RandomHorizontalFlip(p=1.0), v2_transforms.RandomHorizontalFlip(p=1.0), {}),
1097
1098
1099
1100
1101
            (
                det_transforms.RandomIoUCrop(),
                v2_transforms.Compose(
                    [
                        v2_transforms.RandomIoUCrop(),
1102
                        v2_transforms.SanitizeBoundingBox(labels_getter=lambda sample: sample[1]["labels"]),
1103
1104
1105
1106
                    ]
                ),
                {"with_mask": False},
            ),
1107
1108
            (det_transforms.RandomZoomOut(), v2_transforms.RandomZoomOut(), {"with_mask": False}),
            (det_transforms.ScaleJitter((1024, 1024)), v2_transforms.ScaleJitter((1024, 1024)), {}),
1109
1110
1111
1112
            (
                det_transforms.RandomShortestSize(
                    min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333
                ),
1113
                v2_transforms.RandomShortestSize(
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
                    min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333
                ),
                {},
            ),
        ],
    )
    def test_transform(self, t_ref, t, data_kwargs):
        for dp in self.make_datapoints(**data_kwargs):

            # We should use prototype transform first as reference transform performs inplace target update
            torch.manual_seed(12)
            output = t(dp)

            torch.manual_seed(12)
            expected_output = t_ref(*dp)

            assert_equal(expected_output, output)
1131
1132
1133
1134
1135
1136
1137
1138
1139


seg_transforms = import_transforms_from_references("segmentation")


# We need this transform for two reasons:
# 1. transforms.RandomCrop uses a different scheme to pad images and masks of insufficient size than its name
#    counterpart in the detection references. Thus, we cannot use it with `pad_if_needed=True`
# 2. transforms.Pad only supports a fixed padding, but the segmentation datasets don't have a fixed image size.
1140
class PadIfSmaller(v2_transforms.Transform):
1141
1142
1143
    def __init__(self, size, fill=0):
        super().__init__()
        self.size = size
1144
        self.fill = v2_transforms._geometry._setup_fill_arg(fill)
1145
1146

    def _get_params(self, sample):
1147
        height, width = query_spatial_size(sample)
1148
1149
1150
1151
1152
1153
1154
1155
1156
        padding = [0, 0, max(self.size - width, 0), max(self.size - height, 0)]
        needs_padding = any(padding)
        return dict(padding=padding, needs_padding=needs_padding)

    def _transform(self, inpt, params):
        if not params["needs_padding"]:
            return inpt

        fill = self.fill[type(inpt)]
1157
        return prototype_F.pad(inpt, padding=params["padding"], fill=fill)
1158
1159
1160
1161


class TestRefSegTransforms:
    def make_datapoints(self, supports_pil=True, image_dtype=torch.uint8):
1162
        size = (256, 460)
1163
1164
1165
1166
1167
1168
1169
1170
        num_categories = 21

        conv_fns = []
        if supports_pil:
            conv_fns.append(to_image_pil)
        conv_fns.extend([torch.Tensor, lambda x: x])

        for conv_fn in conv_fns:
1171
            datapoint_image = make_image(size=size, color_space="RGB", dtype=image_dtype)
1172
            datapoint_mask = make_segmentation_mask(size=size, num_categories=num_categories, dtype=torch.uint8)
1173

1174
            dp = (conv_fn(datapoint_image), datapoint_mask)
1175
            dp_ref = (
1176
1177
                to_image_pil(datapoint_image) if supports_pil else datapoint_image.as_subclass(torch.Tensor),
                to_image_pil(datapoint_mask),
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
            )

            yield dp, dp_ref

    def set_seed(self, seed=12):
        torch.manual_seed(seed)
        random.seed(seed)

    def check(self, t, t_ref, data_kwargs=None):
        for dp, dp_ref in self.make_datapoints(**data_kwargs or dict()):

            self.set_seed()
1190
            actual = actual_image, actual_mask = t(dp)
1191
1192

            self.set_seed()
1193
1194
1195
1196
1197
            expected_image, expected_mask = t_ref(*dp_ref)
            if isinstance(actual_image, torch.Tensor) and not isinstance(expected_image, torch.Tensor):
                expected_image = legacy_F.pil_to_tensor(expected_image)
            expected_mask = legacy_F.pil_to_tensor(expected_mask).squeeze(0)
            expected = (expected_image, expected_mask)
1198

1199
            assert_equal(actual, expected)
1200
1201
1202
1203
1204
1205

    @pytest.mark.parametrize(
        ("t_ref", "t", "data_kwargs"),
        [
            (
                seg_transforms.RandomHorizontalFlip(flip_prob=1.0),
1206
                v2_transforms.RandomHorizontalFlip(p=1.0),
1207
1208
1209
1210
                dict(),
            ),
            (
                seg_transforms.RandomHorizontalFlip(flip_prob=0.0),
1211
                v2_transforms.RandomHorizontalFlip(p=0.0),
1212
1213
1214
1215
                dict(),
            ),
            (
                seg_transforms.RandomCrop(size=480),
1216
                v2_transforms.Compose(
1217
                    [
1218
                        PadIfSmaller(size=480, fill=defaultdict(lambda: 0, {datapoints.Mask: 255})),
1219
                        v2_transforms.RandomCrop(size=480),
1220
1221
1222
1223
1224
1225
                    ]
                ),
                dict(),
            ),
            (
                seg_transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
1226
                v2_transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
1227
1228
1229
1230
1231
1232
1233
1234
                dict(supports_pil=False, image_dtype=torch.float),
            ),
        ],
    )
    def test_common(self, t_ref, t, data_kwargs):
        self.check(t, t_ref, data_kwargs)

    def check_resize(self, mocker, t_ref, t):
1235
        mock = mocker.patch("torchvision.transforms.v2._geometry.F.resize")
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
        mock_ref = mocker.patch("torchvision.transforms.functional.resize")

        for dp, dp_ref in self.make_datapoints():
            mock.reset_mock()
            mock_ref.reset_mock()

            self.set_seed()
            t(dp)
            assert mock.call_count == 2
            assert all(
                actual is expected
                for actual, expected in zip([call_args[0][0] for call_args in mock.call_args_list], dp)
            )

            self.set_seed()
            t_ref(*dp_ref)
            assert mock_ref.call_count == 2
            assert all(
                actual is expected
                for actual, expected in zip([call_args[0][0] for call_args in mock_ref.call_args_list], dp_ref)
            )

            for args_kwargs, args_kwargs_ref in zip(mock.call_args_list, mock_ref.call_args_list):
                assert args_kwargs[0][1] == [args_kwargs_ref[0][1]]

    def test_random_resize_train(self, mocker):
        base_size = 520
        min_size = base_size // 2
        max_size = base_size * 2

        randint = torch.randint

        def patched_randint(a, b, *other_args, **kwargs):
            if kwargs or len(other_args) > 1 or other_args[0] != ():
                return randint(a, b, *other_args, **kwargs)

            return random.randint(a, b)

        # We are patching torch.randint -> random.randint here, because we can't patch the modules that are not imported
        # normally
1276
        t = v2_transforms.RandomResize(min_size=min_size, max_size=max_size, antialias=True)
1277
        mocker.patch(
1278
            "torchvision.transforms.v2._geometry.torch.randint",
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
            new=patched_randint,
        )

        t_ref = seg_transforms.RandomResize(min_size=min_size, max_size=max_size)

        self.check_resize(mocker, t_ref, t)

    def test_random_resize_eval(self, mocker):
        torch.manual_seed(0)
        base_size = 520

1290
        t = v2_transforms.Resize(size=base_size, antialias=True)
1291
1292
1293
1294

        t_ref = seg_transforms.RandomResize(min_size=base_size, max_size=base_size)

        self.check_resize(mocker, t_ref, t)
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307


@pytest.mark.parametrize(
    ("legacy_dispatcher", "name_only_params"),
    [
        (legacy_F.get_dimensions, {}),
        (legacy_F.get_image_size, {}),
        (legacy_F.get_image_num_channels, {}),
        (legacy_F.to_tensor, {}),
        (legacy_F.pil_to_tensor, {}),
        (legacy_F.convert_image_dtype, {}),
        (legacy_F.to_pil_image, {}),
        (legacy_F.normalize, {}),
1308
        (legacy_F.resize, {"interpolation"}),
1309
1310
1311
        (legacy_F.pad, {"padding", "fill"}),
        (legacy_F.crop, {}),
        (legacy_F.center_crop, {}),
1312
        (legacy_F.resized_crop, {"interpolation"}),
1313
        (legacy_F.hflip, {}),
1314
        (legacy_F.perspective, {"startpoints", "endpoints", "fill", "interpolation"}),
1315
1316
1317
1318
1319
1320
1321
1322
        (legacy_F.vflip, {}),
        (legacy_F.five_crop, {}),
        (legacy_F.ten_crop, {}),
        (legacy_F.adjust_brightness, {}),
        (legacy_F.adjust_contrast, {}),
        (legacy_F.adjust_saturation, {}),
        (legacy_F.adjust_hue, {}),
        (legacy_F.adjust_gamma, {}),
1323
1324
        (legacy_F.rotate, {"center", "fill", "interpolation"}),
        (legacy_F.affine, {"angle", "translate", "center", "fill", "interpolation"}),
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
        (legacy_F.to_grayscale, {}),
        (legacy_F.rgb_to_grayscale, {}),
        (legacy_F.to_tensor, {}),
        (legacy_F.erase, {}),
        (legacy_F.gaussian_blur, {}),
        (legacy_F.invert, {}),
        (legacy_F.posterize, {}),
        (legacy_F.solarize, {}),
        (legacy_F.adjust_sharpness, {}),
        (legacy_F.autocontrast, {}),
        (legacy_F.equalize, {}),
1336
        (legacy_F.elastic_transform, {"fill", "interpolation"}),
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
    ],
)
def test_dispatcher_signature_consistency(legacy_dispatcher, name_only_params):
    legacy_signature = inspect.signature(legacy_dispatcher)
    legacy_params = list(legacy_signature.parameters.values())[1:]

    try:
        prototype_dispatcher = getattr(prototype_F, legacy_dispatcher.__name__)
    except AttributeError:
        raise AssertionError(
            f"Legacy dispatcher `F.{legacy_dispatcher.__name__}` has no prototype equivalent"
        ) from None

    prototype_signature = inspect.signature(prototype_dispatcher)
    prototype_params = list(prototype_signature.parameters.values())[1:]

    # Some dispatchers got extra parameters. This makes sure they have a default argument and thus are BC. We don't
    # need to check if parameters were added in the middle rather than at the end, since that will be caught by the
    # regular check below.
    prototype_params, new_prototype_params = (
        prototype_params[: len(legacy_params)],
        prototype_params[len(legacy_params) :],
    )
    for param in new_prototype_params:
        assert param.default is not param.empty

    # Some annotations were changed mostly to supersets of what was there before. Plus, some legacy dispatchers had no
    # annotations. In these cases we simply drop the annotation and default argument from the comparison
    for prototype_param, legacy_param in zip(prototype_params, legacy_params):
        if legacy_param.name in name_only_params:
            prototype_param._annotation = prototype_param._default = inspect.Parameter.empty
            legacy_param._annotation = legacy_param._default = inspect.Parameter.empty
        elif legacy_param.annotation is inspect.Parameter.empty:
            prototype_param._annotation = inspect.Parameter.empty

    assert prototype_params == legacy_params