transforms_v2_dispatcher_infos.py 14.8 KB
Newer Older
1
import collections.abc
2
3

import pytest
4
import torchvision.transforms.v2.functional as F
5
from common_utils import InfoBase, TestMark
6
from torchvision import datapoints
7
from transforms_v2_kernel_infos import KERNEL_INFOS, pad_xfail_jit_fill_condition
8
9
10
11

__all__ = ["DispatcherInfo", "DISPATCHER_INFOS"]


12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
class PILKernelInfo(InfoBase):
    def __init__(
        self,
        kernel,
        *,
        # Defaults to `kernel.__name__`. Should be set if the function is exposed under a different name
        # TODO: This can probably be removed after roll-out since we shouldn't have any aliasing then
        kernel_name=None,
    ):
        super().__init__(id=kernel_name or kernel.__name__)
        self.kernel = kernel


class DispatcherInfo(InfoBase):
    _KERNEL_INFO_MAP = {info.kernel: info for info in KERNEL_INFOS}

    def __init__(
        self,
        dispatcher,
        *,
        # Dictionary of types that map to the kernel the dispatcher dispatches to.
        kernels,
        # If omitted, no PIL dispatch test will be performed.
        pil_kernel_info=None,
        # See InfoBase
        test_marks=None,
        # See InfoBase
        closeness_kwargs=None,
    ):
        super().__init__(id=dispatcher.__name__, test_marks=test_marks, closeness_kwargs=closeness_kwargs)
        self.dispatcher = dispatcher
        self.kernels = kernels
        self.pil_kernel_info = pil_kernel_info

        kernel_infos = {}
47
        for datapoint_type, kernel in self.kernels.items():
48
49
50
            kernel_info = self._KERNEL_INFO_MAP.get(kernel)
            if not kernel_info:
                raise pytest.UsageError(
51
                    f"Can't register {kernel.__name__} for type {datapoint_type} since there is no `KernelInfo` for it. "
52
                    f"Please add a `KernelInfo` for it in `transforms_v2_kernel_infos.py`."
53
                )
54
            kernel_infos[datapoint_type] = kernel_info
55
        self.kernel_infos = kernel_infos
56

57
58
59
    def sample_inputs(self, *datapoint_types, filter_metadata=True):
        for datapoint_type in datapoint_types or self.kernel_infos.keys():
            kernel_info = self.kernel_infos.get(datapoint_type)
60
61
62
63
            if not kernel_info:
                raise pytest.UsageError(f"There is no kernel registered for type {type.__name__}")

            sample_inputs = kernel_info.sample_inputs_fn()
64
65
66

            if not filter_metadata:
                yield from sample_inputs
67
                return
68

69
70
71
72
73
74
75
76
77
78
79
80
81
            import itertools

            for args_kwargs in sample_inputs:
                for name in itertools.chain(
                    datapoint_type.__annotations__.keys(),
                    # FIXME: this seems ok for conversion dispatchers, but we should probably handle this on a
                    #  per-dispatcher level. However, so far there is no option for that.
                    (f"old_{name}" for name in datapoint_type.__annotations__.keys()),
                ):
                    if name in args_kwargs.kwargs:
                        del args_kwargs.kwargs[name]

                yield args_kwargs
82

83

84
def xfail_jit(reason, *, condition=None):
85
86
87
    return TestMark(
        ("TestDispatchers", "test_scripted_smoke"),
        pytest.mark.xfail(reason=reason),
88
        condition=condition,
89
90
    )

91

92
93
94
95
96
def xfail_jit_python_scalar_arg(name, *, reason=None):
    return xfail_jit(
        reason or f"Python scalar int or float for `{name}` is not supported when scripting",
        condition=lambda args_kwargs: isinstance(args_kwargs.kwargs.get(name), (int, float)),
    )
97
98


99
100
101
skip_dispatch_datapoint = TestMark(
    ("TestDispatchers", "test_dispatch_datapoint"),
    pytest.mark.skip(reason="Dispatcher doesn't support arbitrary datapoint dispatch."),
102
103
)

104
105
106
107
108
109
110
111
112
multi_crop_skips = [
    TestMark(
        ("TestDispatchers", test_name),
        pytest.mark.skip(reason="Multi-crop dispatchers return a sequence of items rather than a single one."),
    )
    for test_name in ["test_simple_tensor_output_type", "test_pil_output_type", "test_datapoint_output_type"]
]
multi_crop_skips.append(skip_dispatch_datapoint)

113

114
115
116
117
118
119
120
def xfails_pil(reason, *, condition=None):
    return [
        TestMark(("TestDispatchers", test_name), pytest.mark.xfail(reason=reason), condition=condition)
        for test_name in ["test_dispatch_pil", "test_pil_output_type"]
    ]


121
def fill_sequence_needs_broadcast(args_kwargs):
122
123
124
125
126
127
128
129
130
131
132
133
    (image_loader, *_), kwargs = args_kwargs
    try:
        fill = kwargs["fill"]
    except KeyError:
        return False

    if not isinstance(fill, collections.abc.Sequence) or len(fill) > 1:
        return False

    return image_loader.num_channels > 1


134
135
xfails_pil_if_fill_sequence_needs_broadcast = xfails_pil(
    "PIL kernel doesn't support sequences of length 1 for `fill` if the number of color channels is larger.",
136
137
138
139
    condition=fill_sequence_needs_broadcast,
)


140
141
142
143
DISPATCHER_INFOS = [
    DispatcherInfo(
        F.affine,
        kernels={
144
145
146
147
            datapoints.Image: F.affine_image_tensor,
            datapoints.Video: F.affine_video,
            datapoints.BoundingBox: F.affine_bounding_box,
            datapoints.Mask: F.affine_mask,
148
        },
149
        pil_kernel_info=PILKernelInfo(F.affine_image_pil),
150
        test_marks=[
151
            *xfails_pil_if_fill_sequence_needs_broadcast,
152
            xfail_jit_python_scalar_arg("shear"),
153
            xfail_jit_python_scalar_arg("fill"),
154
        ],
155
156
157
158
    ),
    DispatcherInfo(
        F.vertical_flip,
        kernels={
159
160
161
162
            datapoints.Image: F.vertical_flip_image_tensor,
            datapoints.Video: F.vertical_flip_video,
            datapoints.BoundingBox: F.vertical_flip_bounding_box,
            datapoints.Mask: F.vertical_flip_mask,
163
        },
164
        pil_kernel_info=PILKernelInfo(F.vertical_flip_image_pil, kernel_name="vertical_flip_image_pil"),
165
166
167
168
    ),
    DispatcherInfo(
        F.rotate,
        kernels={
169
170
171
172
            datapoints.Image: F.rotate_image_tensor,
            datapoints.Video: F.rotate_video,
            datapoints.BoundingBox: F.rotate_bounding_box,
            datapoints.Mask: F.rotate_mask,
173
        },
174
        pil_kernel_info=PILKernelInfo(F.rotate_image_pil),
175
        test_marks=[
176
177
            xfail_jit_python_scalar_arg("fill"),
            *xfails_pil_if_fill_sequence_needs_broadcast,
178
        ],
179
180
181
182
    ),
    DispatcherInfo(
        F.crop,
        kernels={
183
184
185
186
            datapoints.Image: F.crop_image_tensor,
            datapoints.Video: F.crop_video,
            datapoints.BoundingBox: F.crop_bounding_box,
            datapoints.Mask: F.crop_mask,
187
        },
188
        pil_kernel_info=PILKernelInfo(F.crop_image_pil, kernel_name="crop_image_pil"),
189
190
191
192
    ),
    DispatcherInfo(
        F.resized_crop,
        kernels={
193
194
195
196
            datapoints.Image: F.resized_crop_image_tensor,
            datapoints.Video: F.resized_crop_video,
            datapoints.BoundingBox: F.resized_crop_bounding_box,
            datapoints.Mask: F.resized_crop_mask,
197
        },
198
        pil_kernel_info=PILKernelInfo(F.resized_crop_image_pil),
199
200
201
202
    ),
    DispatcherInfo(
        F.pad,
        kernels={
203
204
205
206
            datapoints.Image: F.pad_image_tensor,
            datapoints.Video: F.pad_video,
            datapoints.BoundingBox: F.pad_bounding_box,
            datapoints.Mask: F.pad_mask,
207
        },
208
        pil_kernel_info=PILKernelInfo(F.pad_image_pil, kernel_name="pad_image_pil"),
209
        test_marks=[
210
211
212
213
            *xfails_pil(
                reason=(
                    "PIL kernel doesn't support sequences of length 1 for argument `fill` and "
                    "`padding_mode='constant'`, if the number of color channels is larger."
214
215
216
                ),
                condition=lambda args_kwargs: fill_sequence_needs_broadcast(args_kwargs)
                and args_kwargs.kwargs.get("padding_mode", "constant") == "constant",
217
            ),
218
219
            xfail_jit("F.pad only supports vector fills for list of floats", condition=pad_xfail_jit_fill_condition),
            xfail_jit_python_scalar_arg("padding"),
220
        ],
221
    ),
222
223
224
    DispatcherInfo(
        F.perspective,
        kernels={
225
226
227
228
            datapoints.Image: F.perspective_image_tensor,
            datapoints.Video: F.perspective_video,
            datapoints.BoundingBox: F.perspective_bounding_box,
            datapoints.Mask: F.perspective_mask,
229
        },
230
        pil_kernel_info=PILKernelInfo(F.perspective_image_pil),
231
        test_marks=[
232
233
            *xfails_pil_if_fill_sequence_needs_broadcast,
            xfail_jit_python_scalar_arg("fill"),
234
        ],
235
    ),
236
237
238
    DispatcherInfo(
        F.elastic,
        kernels={
239
240
241
242
            datapoints.Image: F.elastic_image_tensor,
            datapoints.Video: F.elastic_video,
            datapoints.BoundingBox: F.elastic_bounding_box,
            datapoints.Mask: F.elastic_mask,
243
        },
244
        pil_kernel_info=PILKernelInfo(F.elastic_image_pil),
245
        test_marks=[xfail_jit_python_scalar_arg("fill")],
246
    ),
247
248
249
    DispatcherInfo(
        F.center_crop,
        kernels={
250
251
252
253
            datapoints.Image: F.center_crop_image_tensor,
            datapoints.Video: F.center_crop_video,
            datapoints.BoundingBox: F.center_crop_bounding_box,
            datapoints.Mask: F.center_crop_mask,
254
        },
255
        pil_kernel_info=PILKernelInfo(F.center_crop_image_pil),
256
        test_marks=[
257
            xfail_jit_python_scalar_arg("output_size"),
258
        ],
259
260
261
262
    ),
    DispatcherInfo(
        F.gaussian_blur,
        kernels={
263
264
            datapoints.Image: F.gaussian_blur_image_tensor,
            datapoints.Video: F.gaussian_blur_video,
265
        },
266
        pil_kernel_info=PILKernelInfo(F.gaussian_blur_image_pil),
267
        test_marks=[
268
269
            xfail_jit_python_scalar_arg("kernel_size"),
            xfail_jit_python_scalar_arg("sigma"),
270
        ],
271
272
273
274
    ),
    DispatcherInfo(
        F.equalize,
        kernels={
275
276
            datapoints.Image: F.equalize_image_tensor,
            datapoints.Video: F.equalize_video,
277
        },
278
        pil_kernel_info=PILKernelInfo(F.equalize_image_pil, kernel_name="equalize_image_pil"),
279
280
281
282
    ),
    DispatcherInfo(
        F.invert,
        kernels={
283
284
            datapoints.Image: F.invert_image_tensor,
            datapoints.Video: F.invert_video,
285
        },
286
        pil_kernel_info=PILKernelInfo(F.invert_image_pil, kernel_name="invert_image_pil"),
287
288
289
290
    ),
    DispatcherInfo(
        F.posterize,
        kernels={
291
292
            datapoints.Image: F.posterize_image_tensor,
            datapoints.Video: F.posterize_video,
293
        },
294
        pil_kernel_info=PILKernelInfo(F.posterize_image_pil, kernel_name="posterize_image_pil"),
295
296
297
298
    ),
    DispatcherInfo(
        F.solarize,
        kernels={
299
300
            datapoints.Image: F.solarize_image_tensor,
            datapoints.Video: F.solarize_video,
301
        },
302
        pil_kernel_info=PILKernelInfo(F.solarize_image_pil, kernel_name="solarize_image_pil"),
303
304
305
306
    ),
    DispatcherInfo(
        F.autocontrast,
        kernels={
307
308
            datapoints.Image: F.autocontrast_image_tensor,
            datapoints.Video: F.autocontrast_video,
309
        },
310
        pil_kernel_info=PILKernelInfo(F.autocontrast_image_pil, kernel_name="autocontrast_image_pil"),
311
312
313
314
    ),
    DispatcherInfo(
        F.adjust_sharpness,
        kernels={
315
316
            datapoints.Image: F.adjust_sharpness_image_tensor,
            datapoints.Video: F.adjust_sharpness_video,
317
        },
318
        pil_kernel_info=PILKernelInfo(F.adjust_sharpness_image_pil, kernel_name="adjust_sharpness_image_pil"),
319
320
321
322
    ),
    DispatcherInfo(
        F.erase,
        kernels={
323
324
            datapoints.Image: F.erase_image_tensor,
            datapoints.Video: F.erase_video,
325
        },
326
        pil_kernel_info=PILKernelInfo(F.erase_image_pil),
327
        test_marks=[
328
            skip_dispatch_datapoint,
329
        ],
330
    ),
331
332
333
    DispatcherInfo(
        F.adjust_brightness,
        kernels={
334
335
            datapoints.Image: F.adjust_brightness_image_tensor,
            datapoints.Video: F.adjust_brightness_video,
336
        },
337
        pil_kernel_info=PILKernelInfo(F.adjust_brightness_image_pil, kernel_name="adjust_brightness_image_pil"),
338
339
340
341
    ),
    DispatcherInfo(
        F.adjust_contrast,
        kernels={
342
343
            datapoints.Image: F.adjust_contrast_image_tensor,
            datapoints.Video: F.adjust_contrast_video,
344
        },
345
        pil_kernel_info=PILKernelInfo(F.adjust_contrast_image_pil, kernel_name="adjust_contrast_image_pil"),
346
347
348
349
    ),
    DispatcherInfo(
        F.adjust_gamma,
        kernels={
350
351
            datapoints.Image: F.adjust_gamma_image_tensor,
            datapoints.Video: F.adjust_gamma_video,
352
        },
353
        pil_kernel_info=PILKernelInfo(F.adjust_gamma_image_pil, kernel_name="adjust_gamma_image_pil"),
354
355
356
357
    ),
    DispatcherInfo(
        F.adjust_hue,
        kernels={
358
359
            datapoints.Image: F.adjust_hue_image_tensor,
            datapoints.Video: F.adjust_hue_video,
360
        },
361
        pil_kernel_info=PILKernelInfo(F.adjust_hue_image_pil, kernel_name="adjust_hue_image_pil"),
362
363
364
365
    ),
    DispatcherInfo(
        F.adjust_saturation,
        kernels={
366
367
            datapoints.Image: F.adjust_saturation_image_tensor,
            datapoints.Video: F.adjust_saturation_video,
368
        },
369
        pil_kernel_info=PILKernelInfo(F.adjust_saturation_image_pil, kernel_name="adjust_saturation_image_pil"),
370
371
372
373
    ),
    DispatcherInfo(
        F.five_crop,
        kernels={
374
375
            datapoints.Image: F.five_crop_image_tensor,
            datapoints.Video: F.five_crop_video,
376
        },
377
        pil_kernel_info=PILKernelInfo(F.five_crop_image_pil),
378
        test_marks=[
379
            xfail_jit_python_scalar_arg("size"),
380
            *multi_crop_skips,
381
382
383
384
385
        ],
    ),
    DispatcherInfo(
        F.ten_crop,
        kernels={
386
387
            datapoints.Image: F.ten_crop_image_tensor,
            datapoints.Video: F.ten_crop_video,
388
        },
389
        test_marks=[
390
            xfail_jit_python_scalar_arg("size"),
391
            *multi_crop_skips,
392
        ],
393
        pil_kernel_info=PILKernelInfo(F.ten_crop_image_pil),
394
395
396
397
    ),
    DispatcherInfo(
        F.normalize,
        kernels={
398
399
            datapoints.Image: F.normalize_image_tensor,
            datapoints.Video: F.normalize_video,
400
        },
401
        test_marks=[
402
403
            xfail_jit_python_scalar_arg("mean"),
            xfail_jit_python_scalar_arg("std"),
404
        ],
405
    ),
406
407
408
    DispatcherInfo(
        F.convert_dtype,
        kernels={
409
410
            datapoints.Image: F.convert_dtype_image_tensor,
            datapoints.Video: F.convert_dtype_video,
411
412
        },
        test_marks=[
413
            skip_dispatch_datapoint,
414
415
        ],
    ),
416
417
418
    DispatcherInfo(
        F.uniform_temporal_subsample,
        kernels={
419
            datapoints.Video: F.uniform_temporal_subsample_video,
420
421
        },
        test_marks=[
422
            skip_dispatch_datapoint,
423
424
        ],
    ),
425
426
427
428
429
430
431
432
433
434
435
436
437
438
    DispatcherInfo(
        F.clamp_bounding_box,
        kernels={datapoints.BoundingBox: F.clamp_bounding_box},
        test_marks=[
            skip_dispatch_datapoint,
        ],
    ),
    DispatcherInfo(
        F.convert_format_bounding_box,
        kernels={datapoints.BoundingBox: F.convert_format_bounding_box},
        test_marks=[
            skip_dispatch_datapoint,
        ],
    ),
439
]