common_utils.py 16.2 KB
Newer Older
1
2
3
4
import os
import shutil
import tempfile
import contextlib
eellison's avatar
eellison committed
5
6
7
import unittest
import argparse
import sys
8
import io
eellison's avatar
eellison committed
9
import torch
10
import warnings
eellison's avatar
eellison committed
11
import __main__
12
import random
13

14
from numbers import Number
Philip Meier's avatar
Philip Meier committed
15
from torch._six import string_classes
16
from collections import OrderedDict
17
from _utils_internal import get_relative_path
18

19
20
21
import numpy as np
from PIL import Image

22
23
24
25
IS_PY39 = sys.version_info.major == 3 and sys.version_info.minor == 9
PY39_SEGFAULT_SKIP_MSG = "Segmentation fault with Python 3.9, see https://github.com/pytorch/vision/issues/3367"
PY39_SKIP = unittest.skipIf(IS_PY39, PY39_SEGFAULT_SKIP_MSG)

26
27
28
29
30
31
32
33
34
35
36

@contextlib.contextmanager
def get_tmp_dir(src=None, **kwargs):
    tmp_dir = tempfile.mkdtemp(**kwargs)
    if src is not None:
        os.rmdir(tmp_dir)
        shutil.copytree(src, tmp_dir)
    try:
        yield tmp_dir
    finally:
        shutil.rmtree(tmp_dir)
eellison's avatar
eellison committed
37
38


39
40
41
42
43
44
def set_rng_seed(seed):
    torch.manual_seed(seed)
    random.seed(seed)
    np.random.seed(seed)


eellison's avatar
eellison committed
45
ACCEPT = os.getenv('EXPECTTEST_ACCEPT')
46
47
TEST_WITH_SLOW = os.getenv('PYTORCH_TEST_WITH_SLOW', '0') == '1'

eellison's avatar
eellison committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('--accept', action='store_true')
args, remaining = parser.parse_known_args()
if not ACCEPT:
    ACCEPT = args.accept
for i, arg in enumerate(sys.argv):
    if arg == '--accept':
        del sys.argv[i]
        break


class MapNestedTensorObjectImpl(object):
    def __init__(self, tensor_map_fn):
        self.tensor_map_fn = tensor_map_fn

    def __call__(self, object):
        if isinstance(object, torch.Tensor):
            return self.tensor_map_fn(object)

        elif isinstance(object, dict):
            mapped_dict = {}
            for key, value in object.items():
                mapped_dict[self(key)] = self(value)
            return mapped_dict

        elif isinstance(object, (list, tuple)):
            mapped_iter = []
            for iter in object:
                mapped_iter.append(self(iter))
            return mapped_iter if not isinstance(object, tuple) else tuple(mapped_iter)

        else:
            return object


def map_nested_tensor_object(object, tensor_map_fn):
    impl = MapNestedTensorObjectImpl(tensor_map_fn)
    return impl(object)


89
90
91
92
93
94
95
96
def is_iterable(obj):
    try:
        iter(obj)
        return True
    except TypeError:
        return False


eellison's avatar
eellison committed
97
98
99
# adapted from TestCase in torch/test/common_utils to accept non-string
# inputs and set maximum binary size
class TestCase(unittest.TestCase):
100
101
    precision = 1e-5

102
    def _get_expected_file(self, subname=None, strip_suffix=None):
103
        def remove_prefix_suffix(text, prefix, suffix):
eellison's avatar
eellison committed
104
            if text.startswith(prefix):
105
106
107
                text = text[len(prefix):]
            if suffix is not None and text.endswith(suffix):
                text = text[:len(text) - len(suffix)]
eellison's avatar
eellison committed
108
109
110
111
112
            return text
        # NB: we take __file__ from the module that defined the test
        # class, so we place the expect directory where the test script
        # lives, NOT where test/common_utils.py lives.
        module_id = self.__class__.__module__
113
        munged_id = remove_prefix_suffix(self.id(), module_id + ".", strip_suffix)
eellison's avatar
eellison committed
114

115
116
117
118
119
120
121
        # Determine expected file based on environment
        expected_file_base = get_relative_path(
            os.path.realpath(sys.modules[module_id].__file__),
            "expect")

        # Set expected_file based on subname.
        expected_file = os.path.join(expected_file_base, munged_id)
eellison's avatar
eellison committed
122
123
124
125
        if subname:
            expected_file += "_" + subname
        expected_file += "_expect.pkl"

126
127
        if not ACCEPT and not os.path.exists(expected_file):
            raise RuntimeError(
128
129
130
                f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
                "to accept the current output, run:\n"
                f"python {__main__.__file__} {munged_id} --accept")
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

        return expected_file

    def assertExpected(self, output, subname=None, prec=None, strip_suffix=None):
        r"""
        Test that a python value matches the recorded contents of a file
        derived from the name of this test and subname.  The value must be
        pickable with `torch.save`. This file
        is placed in the 'expect' directory in the same directory
        as the test script. You can automatically update the recorded test
        output using --accept.

        If you call this multiple times in a single function, you must
        give a unique subname each time.

        strip_suffix allows different tests that expect similar numerics, e.g.
        "test_xyz_cuda" and "test_xyz_cpu", to use the same pickled data.
        test_xyz_cuda would pass strip_suffix="_cuda", test_xyz_cpu would pass
        strip_suffix="_cpu", and they would both use a data file name based on
        "test_xyz".
        """
        expected_file = self._get_expected_file(subname, strip_suffix)

        if ACCEPT:
155
156
            filename = {os.path.basename(expected_file)}
            print("Accepting updated output for {}:\n\n{}".format(filename, output))
eellison's avatar
eellison committed
157
158
159
            torch.save(output, expected_file)
            MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
            binary_size = os.path.getsize(expected_file)
160
161
            if binary_size > MAX_PICKLE_SIZE:
                raise RuntimeError("The output for {}, is larger than 50kb".format(filename))
eellison's avatar
eellison committed
162
        else:
163
            expected = torch.load(expected_file)
164
            self.assertEqual(output, expected, prec=prec)
eellison's avatar
eellison committed
165

166
167
168
169
170
171
172
173
174
    def assertEqual(self, x, y, prec=None, message='', allow_inf=False):
        """
        This is copied from pytorch/test/common_utils.py's TestCase.assertEqual
        """
        if isinstance(prec, str) and message == '':
            message = prec
            prec = None
        if prec is None:
            prec = self.precision
eellison's avatar
eellison committed
175

176
177
178
179
180
181
182
183
184
185
186
187
188
189
        if isinstance(x, torch.Tensor) and isinstance(y, Number):
            self.assertEqual(x.item(), y, prec=prec, message=message,
                             allow_inf=allow_inf)
        elif isinstance(y, torch.Tensor) and isinstance(x, Number):
            self.assertEqual(x, y.item(), prec=prec, message=message,
                             allow_inf=allow_inf)
        elif isinstance(x, torch.Tensor) and isinstance(y, torch.Tensor):
            def assertTensorsEqual(a, b):
                super(TestCase, self).assertEqual(a.size(), b.size(), message)
                if a.numel() > 0:
                    if (a.device.type == 'cpu' and (a.dtype == torch.float16 or a.dtype == torch.bfloat16)):
                        # CPU half and bfloat16 tensors don't have the methods we need below
                        a = a.to(torch.float32)
                    b = b.to(a)
eellison's avatar
eellison committed
190

191
192
193
194
195
196
197
198
                    if (a.dtype == torch.bool) != (b.dtype == torch.bool):
                        raise TypeError("Was expecting both tensors to be bool type.")
                    else:
                        if a.dtype == torch.bool and b.dtype == torch.bool:
                            # we want to respect precision but as bool doesn't support substraction,
                            # boolean tensor has to be converted to int
                            a = a.to(torch.int)
                            b = b.to(torch.int)
eellison's avatar
eellison committed
199

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
                        diff = a - b
                        if a.is_floating_point():
                            # check that NaNs are in the same locations
                            nan_mask = torch.isnan(a)
                            self.assertTrue(torch.equal(nan_mask, torch.isnan(b)), message)
                            diff[nan_mask] = 0
                            # inf check if allow_inf=True
                            if allow_inf:
                                inf_mask = torch.isinf(a)
                                inf_sign = inf_mask.sign()
                                self.assertTrue(torch.equal(inf_sign, torch.isinf(b).sign()), message)
                                diff[inf_mask] = 0
                        # TODO: implement abs on CharTensor (int8)
                        if diff.is_signed() and diff.dtype != torch.int8:
                            diff = diff.abs()
                        max_err = diff.max()
                        tolerance = prec + prec * abs(a.max())
                        self.assertLessEqual(max_err, tolerance, message)
            super(TestCase, self).assertEqual(x.is_sparse, y.is_sparse, message)
            super(TestCase, self).assertEqual(x.is_quantized, y.is_quantized, message)
            if x.is_sparse:
                x = self.safeCoalesce(x)
                y = self.safeCoalesce(y)
                assertTensorsEqual(x._indices(), y._indices())
                assertTensorsEqual(x._values(), y._values())
            elif x.is_quantized and y.is_quantized:
                self.assertEqual(x.qscheme(), y.qscheme(), prec=prec,
                                 message=message, allow_inf=allow_inf)
                if x.qscheme() == torch.per_tensor_affine:
                    self.assertEqual(x.q_scale(), y.q_scale(), prec=prec,
                                     message=message, allow_inf=allow_inf)
                    self.assertEqual(x.q_zero_point(), y.q_zero_point(),
                                     prec=prec, message=message,
                                     allow_inf=allow_inf)
                elif x.qscheme() == torch.per_channel_affine:
                    self.assertEqual(x.q_per_channel_scales(), y.q_per_channel_scales(), prec=prec,
                                     message=message, allow_inf=allow_inf)
                    self.assertEqual(x.q_per_channel_zero_points(), y.q_per_channel_zero_points(),
                                     prec=prec, message=message,
                                     allow_inf=allow_inf)
                    self.assertEqual(x.q_per_channel_axis(), y.q_per_channel_axis(),
                                     prec=prec, message=message)
                self.assertEqual(x.dtype, y.dtype)
                self.assertEqual(x.int_repr().to(torch.int32),
                                 y.int_repr().to(torch.int32), prec=prec,
                                 message=message, allow_inf=allow_inf)
            else:
                assertTensorsEqual(x, y)
        elif isinstance(x, string_classes) and isinstance(y, string_classes):
            super(TestCase, self).assertEqual(x, y, message)
        elif type(x) == set and type(y) == set:
            super(TestCase, self).assertEqual(x, y, message)
        elif isinstance(x, dict) and isinstance(y, dict):
            if isinstance(x, OrderedDict) and isinstance(y, OrderedDict):
                self.assertEqual(x.items(), y.items(), prec=prec,
                                 message=message, allow_inf=allow_inf)
            else:
                self.assertEqual(set(x.keys()), set(y.keys()), prec=prec,
                                 message=message, allow_inf=allow_inf)
                key_list = list(x.keys())
                self.assertEqual([x[k] for k in key_list],
                                 [y[k] for k in key_list],
                                 prec=prec, message=message,
                                 allow_inf=allow_inf)
        elif is_iterable(x) and is_iterable(y):
            super(TestCase, self).assertEqual(len(x), len(y), message)
            for x_, y_ in zip(x, y):
                self.assertEqual(x_, y_, prec=prec, message=message,
                                 allow_inf=allow_inf)
        elif isinstance(x, bool) and isinstance(y, bool):
            super(TestCase, self).assertEqual(x, y, message)
        elif isinstance(x, Number) and isinstance(y, Number):
Philip Meier's avatar
Philip Meier committed
272
            inf = float("inf")
273
274
275
276
277
278
279
280
281
            if abs(x) == inf or abs(y) == inf:
                if allow_inf:
                    super(TestCase, self).assertEqual(x, y, message)
                else:
                    self.fail("Expected finite numeric values - x={}, y={}".format(x, y))
                return
            super(TestCase, self).assertLessEqual(abs(x - y), prec, message)
        else:
            super(TestCase, self).assertEqual(x, y, message)
eellison's avatar
eellison committed
282

283
    def check_jit_scriptable(self, nn_module, args, unwrapper=None, skip=False):
284
285
286
287
288
289
        """
        Check that a nn.Module's results in TorchScript match eager and that it
        can be exported
        """
        if not TEST_WITH_SLOW or skip:
            # TorchScript is not enabled, skip these tests
290
291
292
293
294
295
296
297
            msg = "The check_jit_scriptable test for {} was skipped. " \
                  "This test checks if the module's results in TorchScript " \
                  "match eager and that it can be exported. To run these " \
                  "tests make sure you set the environment variable " \
                  "PYTORCH_TEST_WITH_SLOW=1 and that the test is not " \
                  "manually skipped.".format(nn_module.__class__.__name__)
            warnings.warn(msg, RuntimeWarning)
            return None
eellison's avatar
eellison committed
298

299
300
301
302
303
304
305
306
307
308
        sm = torch.jit.script(nn_module)

        with freeze_rng_state():
            eager_out = nn_module(*args)

        with freeze_rng_state():
            script_out = sm(*args)
            if unwrapper:
                script_out = unwrapper(script_out)

309
        self.assertEqual(eager_out, script_out, prec=1e-4)
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
        self.assertExportImportModule(sm, args)

        return sm

    def getExportImportCopy(self, m):
        """
        Save and load a TorchScript model
        """
        buffer = io.BytesIO()
        torch.jit.save(m, buffer)
        buffer.seek(0)
        imported = torch.jit.load(buffer)
        return imported

    def assertExportImportModule(self, m, args):
        """
        Check that the results of a model are the same after saving and loading
        """
        m_import = self.getExportImportCopy(m)
        with freeze_rng_state():
            results = m(*args)
        with freeze_rng_state():
            results_from_imported = m_import(*args)
        self.assertEqual(results, results_from_imported)


@contextlib.contextmanager
def freeze_rng_state():
    rng_state = torch.get_rng_state()
    if torch.cuda.is_available():
        cuda_rng_state = torch.cuda.get_rng_state()
    yield
    if torch.cuda.is_available():
        torch.cuda.set_rng_state(cuda_rng_state)
    torch.set_rng_state(rng_state)
345
346
347
348
349


class TransformsTester(unittest.TestCase):

    def _create_data(self, height=3, width=3, channels=3, device="cpu"):
350
        tensor = torch.randint(0, 256, (channels, height, width), dtype=torch.uint8, device=device)
351
352
353
        pil_img = Image.fromarray(tensor.permute(1, 2, 0).contiguous().cpu().numpy())
        return tensor, pil_img

354
355
    def _create_data_batch(self, height=3, width=3, channels=3, num_samples=4, device="cpu"):
        batch_tensor = torch.randint(
356
            0, 256,
357
358
359
360
361
362
            (num_samples, channels, height, width),
            dtype=torch.uint8,
            device=device
        )
        return batch_tensor

363
364
365
366
367
368
369
370
371
    def compareTensorToPIL(self, tensor, pil_image, msg=None):
        np_pil_image = np.array(pil_image)
        if np_pil_image.ndim == 2:
            np_pil_image = np_pil_image[:, :, None]
        pil_tensor = torch.as_tensor(np_pil_image.transpose((2, 0, 1)))
        if msg is None:
            msg = "tensor:\n{} \ndid not equal PIL tensor:\n{}".format(tensor, pil_tensor)
        self.assertTrue(tensor.cpu().equal(pil_tensor), msg)

372
373
374
375
376
    def approxEqualTensorToPIL(self, tensor, pil_image, tol=1e-5, msg=None, agg_method="mean"):
        np_pil_image = np.array(pil_image)
        if np_pil_image.ndim == 2:
            np_pil_image = np_pil_image[:, :, None]
        pil_tensor = torch.as_tensor(np_pil_image.transpose((2, 0, 1))).to(tensor)
vfdev's avatar
vfdev committed
377
378
        # error value can be mean absolute error, max abs error
        err = getattr(torch, agg_method)(torch.abs(tensor - pil_tensor)).item()
379
380
381
382
        self.assertTrue(
            err < tol,
            msg="{}: err={}, tol={}: \n{}\nvs\n{}".format(msg, err, tol, tensor[0, :10, :10], pil_tensor[0, :10, :10])
        )
383
384
385
386
387
388
389
390
391
392
393
394
395


def cycle_over(objs):
    for idx, obj in enumerate(objs):
        yield obj, objs[:idx] + objs[idx + 1:]


def int_dtypes():
    return torch.testing.integral_types()


def float_dtypes():
    return torch.testing.floating_types()
396
397
398
399
400
401
402
403


@contextlib.contextmanager
def disable_console_output():
    with contextlib.ExitStack() as stack, open(os.devnull, "w") as devnull:
        stack.enter_context(contextlib.redirect_stdout(devnull))
        stack.enter_context(contextlib.redirect_stderr(devnull))
        yield