common_utils.py 12.9 KB
Newer Older
1
2
3
4
import os
import shutil
import tempfile
import contextlib
eellison's avatar
eellison committed
5
6
7
import unittest
import argparse
import sys
8
import io
eellison's avatar
eellison committed
9
10
11
import torch
import errno
import __main__
12

13
14
15
16
from numbers import Number
from torch._six import string_classes, inf
from collections import OrderedDict

17
18
19
20
21
22
23
24
25
26
27

@contextlib.contextmanager
def get_tmp_dir(src=None, **kwargs):
    tmp_dir = tempfile.mkdtemp(**kwargs)
    if src is not None:
        os.rmdir(tmp_dir)
        shutil.copytree(src, tmp_dir)
    try:
        yield tmp_dir
    finally:
        shutil.rmtree(tmp_dir)
eellison's avatar
eellison committed
28
29
30


ACCEPT = os.getenv('EXPECTTEST_ACCEPT')
31
32
33
TEST_WITH_SLOW = os.getenv('PYTORCH_TEST_WITH_SLOW', '0') == '1'
# TEST_WITH_SLOW = True  # TODO: Delete this line once there is a PYTORCH_TEST_WITH_SLOW aware CI job

eellison's avatar
eellison committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('--accept', action='store_true')
args, remaining = parser.parse_known_args()
if not ACCEPT:
    ACCEPT = args.accept
for i, arg in enumerate(sys.argv):
    if arg == '--accept':
        del sys.argv[i]
        break


class MapNestedTensorObjectImpl(object):
    def __init__(self, tensor_map_fn):
        self.tensor_map_fn = tensor_map_fn

    def __call__(self, object):
        if isinstance(object, torch.Tensor):
            return self.tensor_map_fn(object)

        elif isinstance(object, dict):
            mapped_dict = {}
            for key, value in object.items():
                mapped_dict[self(key)] = self(value)
            return mapped_dict

        elif isinstance(object, (list, tuple)):
            mapped_iter = []
            for iter in object:
                mapped_iter.append(self(iter))
            return mapped_iter if not isinstance(object, tuple) else tuple(mapped_iter)

        else:
            return object


def map_nested_tensor_object(object, tensor_map_fn):
    impl = MapNestedTensorObjectImpl(tensor_map_fn)
    return impl(object)


75
76
77
78
79
80
81
82
def is_iterable(obj):
    try:
        iter(obj)
        return True
    except TypeError:
        return False


eellison's avatar
eellison committed
83
84
85
# adapted from TestCase in torch/test/common_utils to accept non-string
# inputs and set maximum binary size
class TestCase(unittest.TestCase):
86
87
88
    precision = 1e-5

    def assertExpected(self, output, subname=None, prec=None):
eellison's avatar
eellison committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
        r"""
        Test that a python value matches the recorded contents of a file
        derived from the name of this test and subname.  The value must be
        pickable with `torch.save`. This file
        is placed in the 'expect' directory in the same directory
        as the test script. You can automatically update the recorded test
        output using --accept.

        If you call this multiple times in a single function, you must
        give a unique subname each time.
        """
        def remove_prefix(text, prefix):
            if text.startswith(prefix):
                return text[len(prefix):]
            return text
        # NB: we take __file__ from the module that defined the test
        # class, so we place the expect directory where the test script
        # lives, NOT where test/common_utils.py lives.
        module_id = self.__class__.__module__
        munged_id = remove_prefix(self.id(), module_id + ".")
        test_file = os.path.realpath(sys.modules[module_id].__file__)
        expected_file = os.path.join(os.path.dirname(test_file),
                                     "expect",
                                     munged_id)

        subname_output = ""
        if subname:
            expected_file += "_" + subname
            subname_output = " ({})".format(subname)
        expected_file += "_expect.pkl"
        expected = None

        def accept_output(update_type):
            print("Accepting {} for {}{}:\n\n{}".format(update_type, munged_id, subname_output, output))
            torch.save(output, expected_file)
            MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
            binary_size = os.path.getsize(expected_file)
            self.assertTrue(binary_size <= MAX_PICKLE_SIZE)

        try:
            expected = torch.load(expected_file)
        except IOError as e:
            if e.errno != errno.ENOENT:
                raise
            elif ACCEPT:
                return accept_output("output")
            else:
                raise RuntimeError(
                    ("I got this output for {}{}:\n\n{}\n\n"
                     "No expect file exists; to accept the current output, run:\n"
                     "python {} {} --accept").format(munged_id, subname_output, output, __main__.__file__, munged_id))

        if ACCEPT:
            equal = False
            try:
144
                equal = self.assertEqual(output, expected, prec=prec)
eellison's avatar
eellison committed
145
146
147
148
149
            except Exception:
                equal = False
            if not equal:
                return accept_output("updated output")
        else:
150
            self.assertEqual(output, expected, prec=prec)
eellison's avatar
eellison committed
151

152
153
154
155
156
157
158
159
160
    def assertEqual(self, x, y, prec=None, message='', allow_inf=False):
        """
        This is copied from pytorch/test/common_utils.py's TestCase.assertEqual
        """
        if isinstance(prec, str) and message == '':
            message = prec
            prec = None
        if prec is None:
            prec = self.precision
eellison's avatar
eellison committed
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
        if isinstance(x, torch.Tensor) and isinstance(y, Number):
            self.assertEqual(x.item(), y, prec=prec, message=message,
                             allow_inf=allow_inf)
        elif isinstance(y, torch.Tensor) and isinstance(x, Number):
            self.assertEqual(x, y.item(), prec=prec, message=message,
                             allow_inf=allow_inf)
        elif isinstance(x, torch.Tensor) and isinstance(y, torch.Tensor):
            def assertTensorsEqual(a, b):
                super(TestCase, self).assertEqual(a.size(), b.size(), message)
                if a.numel() > 0:
                    if (a.device.type == 'cpu' and (a.dtype == torch.float16 or a.dtype == torch.bfloat16)):
                        # CPU half and bfloat16 tensors don't have the methods we need below
                        a = a.to(torch.float32)
                    b = b.to(a)
eellison's avatar
eellison committed
176

177
178
179
180
181
182
183
184
                    if (a.dtype == torch.bool) != (b.dtype == torch.bool):
                        raise TypeError("Was expecting both tensors to be bool type.")
                    else:
                        if a.dtype == torch.bool and b.dtype == torch.bool:
                            # we want to respect precision but as bool doesn't support substraction,
                            # boolean tensor has to be converted to int
                            a = a.to(torch.int)
                            b = b.to(torch.int)
eellison's avatar
eellison committed
185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
                        diff = a - b
                        if a.is_floating_point():
                            # check that NaNs are in the same locations
                            nan_mask = torch.isnan(a)
                            self.assertTrue(torch.equal(nan_mask, torch.isnan(b)), message)
                            diff[nan_mask] = 0
                            # inf check if allow_inf=True
                            if allow_inf:
                                inf_mask = torch.isinf(a)
                                inf_sign = inf_mask.sign()
                                self.assertTrue(torch.equal(inf_sign, torch.isinf(b).sign()), message)
                                diff[inf_mask] = 0
                        # TODO: implement abs on CharTensor (int8)
                        if diff.is_signed() and diff.dtype != torch.int8:
                            diff = diff.abs()
                        max_err = diff.max()
                        tolerance = prec + prec * abs(a.max())
                        self.assertLessEqual(max_err, tolerance, message)
            super(TestCase, self).assertEqual(x.is_sparse, y.is_sparse, message)
            super(TestCase, self).assertEqual(x.is_quantized, y.is_quantized, message)
            if x.is_sparse:
                x = self.safeCoalesce(x)
                y = self.safeCoalesce(y)
                assertTensorsEqual(x._indices(), y._indices())
                assertTensorsEqual(x._values(), y._values())
            elif x.is_quantized and y.is_quantized:
                self.assertEqual(x.qscheme(), y.qscheme(), prec=prec,
                                 message=message, allow_inf=allow_inf)
                if x.qscheme() == torch.per_tensor_affine:
                    self.assertEqual(x.q_scale(), y.q_scale(), prec=prec,
                                     message=message, allow_inf=allow_inf)
                    self.assertEqual(x.q_zero_point(), y.q_zero_point(),
                                     prec=prec, message=message,
                                     allow_inf=allow_inf)
                elif x.qscheme() == torch.per_channel_affine:
                    self.assertEqual(x.q_per_channel_scales(), y.q_per_channel_scales(), prec=prec,
                                     message=message, allow_inf=allow_inf)
                    self.assertEqual(x.q_per_channel_zero_points(), y.q_per_channel_zero_points(),
                                     prec=prec, message=message,
                                     allow_inf=allow_inf)
                    self.assertEqual(x.q_per_channel_axis(), y.q_per_channel_axis(),
                                     prec=prec, message=message)
                self.assertEqual(x.dtype, y.dtype)
                self.assertEqual(x.int_repr().to(torch.int32),
                                 y.int_repr().to(torch.int32), prec=prec,
                                 message=message, allow_inf=allow_inf)
            else:
                assertTensorsEqual(x, y)
        elif isinstance(x, string_classes) and isinstance(y, string_classes):
            super(TestCase, self).assertEqual(x, y, message)
        elif type(x) == set and type(y) == set:
            super(TestCase, self).assertEqual(x, y, message)
        elif isinstance(x, dict) and isinstance(y, dict):
            if isinstance(x, OrderedDict) and isinstance(y, OrderedDict):
                self.assertEqual(x.items(), y.items(), prec=prec,
                                 message=message, allow_inf=allow_inf)
            else:
                self.assertEqual(set(x.keys()), set(y.keys()), prec=prec,
                                 message=message, allow_inf=allow_inf)
                key_list = list(x.keys())
                self.assertEqual([x[k] for k in key_list],
                                 [y[k] for k in key_list],
                                 prec=prec, message=message,
                                 allow_inf=allow_inf)
        elif is_iterable(x) and is_iterable(y):
            super(TestCase, self).assertEqual(len(x), len(y), message)
            for x_, y_ in zip(x, y):
                self.assertEqual(x_, y_, prec=prec, message=message,
                                 allow_inf=allow_inf)
        elif isinstance(x, bool) and isinstance(y, bool):
            super(TestCase, self).assertEqual(x, y, message)
        elif isinstance(x, Number) and isinstance(y, Number):
            if abs(x) == inf or abs(y) == inf:
                if allow_inf:
                    super(TestCase, self).assertEqual(x, y, message)
                else:
                    self.fail("Expected finite numeric values - x={}, y={}".format(x, y))
                return
            super(TestCase, self).assertLessEqual(abs(x - y), prec, message)
        else:
            super(TestCase, self).assertEqual(x, y, message)
eellison's avatar
eellison committed
267

268
269
270
271
272
273
274
275
    def checkModule(self, nn_module, args, unwrapper=None, skip=False):
        """
        Check that a nn.Module's results in TorchScript match eager and that it
        can be exported
        """
        if not TEST_WITH_SLOW or skip:
            # TorchScript is not enabled, skip these tests
            return
eellison's avatar
eellison committed
276

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
        sm = torch.jit.script(nn_module)

        with freeze_rng_state():
            eager_out = nn_module(*args)

        with freeze_rng_state():
            script_out = sm(*args)
            if unwrapper:
                script_out = unwrapper(script_out)

        self.assertEqual(eager_out, script_out)
        self.assertExportImportModule(sm, args)

        return sm

    def getExportImportCopy(self, m):
        """
        Save and load a TorchScript model
        """
        buffer = io.BytesIO()
        torch.jit.save(m, buffer)
        buffer.seek(0)
        imported = torch.jit.load(buffer)
        return imported

    def assertExportImportModule(self, m, args):
        """
        Check that the results of a model are the same after saving and loading
        """
        m_import = self.getExportImportCopy(m)
        with freeze_rng_state():
            results = m(*args)
        with freeze_rng_state():
            results_from_imported = m_import(*args)
        self.assertEqual(results, results_from_imported)


@contextlib.contextmanager
def freeze_rng_state():
    rng_state = torch.get_rng_state()
    if torch.cuda.is_available():
        cuda_rng_state = torch.cuda.get_rng_state()
    yield
    if torch.cuda.is_available():
        torch.cuda.set_rng_state(cuda_rng_state)
    torch.set_rng_state(rng_state)