_meta_registrations.py 3.67 KB
Newer Older
1
2
import functools

Edward Z. Yang's avatar
Edward Z. Yang committed
3
import torch
4
import torch._custom_ops
Edward Z. Yang's avatar
Edward Z. Yang committed
5
6
7
8
9
10
import torch.library

# Ensure that torch.ops.torchvision is visible
import torchvision.extension  # noqa: F401


11
12
13
@functools.lru_cache(None)
def get_meta_lib():
    return torch.library.Library("torchvision", "IMPL", "Meta")
Edward Z. Yang's avatar
Edward Z. Yang committed
14
15


16
def register_meta(op_name, overload_name="default"):
Edward Z. Yang's avatar
Edward Z. Yang committed
17
    def wrapper(fn):
18
19
        if torchvision.extension._has_ops():
            get_meta_lib().impl(getattr(getattr(torch.ops.torchvision, op_name), overload_name), fn)
Edward Z. Yang's avatar
Edward Z. Yang committed
20
21
22
23
24
        return fn

    return wrapper


25
@register_meta("roi_align")
Edward Z. Yang's avatar
Edward Z. Yang committed
26
def meta_roi_align(input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio, aligned):
27
28
    torch._check(rois.size(1) == 5, lambda: "rois must have shape as Tensor[K, 5]")
    torch._check(
Edward Z. Yang's avatar
Edward Z. Yang committed
29
30
31
32
33
34
35
        input.dtype == rois.dtype,
        lambda: (
            "Expected tensor for input to have the same type as tensor for rois; "
            f"but type {input.dtype} does not equal {rois.dtype}"
        ),
    )
    num_rois = rois.size(0)
36
    channels = input.size(1)
Edward Z. Yang's avatar
Edward Z. Yang committed
37
38
39
    return input.new_empty((num_rois, channels, pooled_height, pooled_width))


40
@register_meta("_roi_align_backward")
Edward Z. Yang's avatar
Edward Z. Yang committed
41
42
def meta_roi_align_backward(
    grad, rois, spatial_scale, pooled_height, pooled_width, batch_size, channels, height, width, sampling_ratio, aligned
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
):
    torch._check(
        grad.dtype == rois.dtype,
        lambda: (
            "Expected tensor for grad to have the same type as tensor for rois; "
            f"but type {grad.dtype} does not equal {rois.dtype}"
        ),
    )
    return grad.new_empty((batch_size, channels, height, width))


@register_meta("ps_roi_align")
def meta_ps_roi_align(input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio):
    torch._check(rois.size(1) == 5, lambda: "rois must have shape as Tensor[K, 5]")
    torch._check(
        input.dtype == rois.dtype,
        lambda: (
            "Expected tensor for input to have the same type as tensor for rois; "
            f"but type {input.dtype} does not equal {rois.dtype}"
        ),
    )
    channels = input.size(1)
    torch._check(
        channels % (pooled_height * pooled_width) == 0,
        "input channels must be a multiple of pooling height * pooling width",
    )

    num_rois = rois.size(0)
    out_size = (num_rois, channels // (pooled_height * pooled_width), pooled_height, pooled_width)
    return input.new_empty(out_size), torch.empty(out_size, dtype=torch.int32, device="meta")


@register_meta("_ps_roi_align_backward")
def meta_ps_roi_align_backward(
    grad,
    rois,
    channel_mapping,
    spatial_scale,
    pooled_height,
    pooled_width,
    sampling_ratio,
    batch_size,
    channels,
    height,
    width,
Edward Z. Yang's avatar
Edward Z. Yang committed
88
):
89
    torch._check(
Edward Z. Yang's avatar
Edward Z. Yang committed
90
91
92
93
94
95
96
        grad.dtype == rois.dtype,
        lambda: (
            "Expected tensor for grad to have the same type as tensor for rois; "
            f"but type {grad.dtype} does not equal {rois.dtype}"
        ),
    )
    return grad.new_empty((batch_size, channels, height, width))
97
98
99
100
101
102
103
104
105
106
107
108
109
110


@torch._custom_ops.impl_abstract("torchvision::nms")
def meta_nms(dets, scores, iou_threshold):
    torch._check(dets.dim() == 2, lambda: f"boxes should be a 2d tensor, got {dets.dim()}D")
    torch._check(dets.size(1) == 4, lambda: f"boxes should have 4 elements in dimension 1, got {dets.size(1)}")
    torch._check(scores.dim() == 1, lambda: f"scores should be a 1d tensor, got {scores.dim()}")
    torch._check(
        dets.size(0) == scores.size(0),
        lambda: f"boxes and scores should have same number of elements in dimension 0, got {dets.size(0)} and {scores.size(0)}",
    )
    ctx = torch._custom_ops.get_ctx()
    num_to_keep = ctx.create_unbacked_symint()
    return dets.new_empty(num_to_keep, dtype=torch.long)