_misc.py 10.7 KB
Newer Older
1
import math
2
from typing import List, Optional, Union
3

4
import PIL.Image
5
import torch
6
from torch.nn.functional import conv2d, pad as torch_pad
7

8
from torchvision import datapoints
9
from torchvision.transforms._functional_tensor import _max_value
10
from torchvision.transforms.functional import pil_to_tensor, to_pil_image
11

12
13
from torchvision.utils import _log_api_usage_once

14
from ._utils import _get_kernel, _register_explicit_noop, _register_kernel_internal, _register_unsupported_type
15

16

17
18
19
20
21
22
23
24
@_register_explicit_noop(datapoints.BoundingBoxes, datapoints.Mask)
@_register_unsupported_type(PIL.Image.Image)
def normalize(
    inpt: Union[datapoints._TensorImageTypeJIT, datapoints._TensorVideoTypeJIT],
    mean: List[float],
    std: List[float],
    inplace: bool = False,
) -> torch.Tensor:
25
    if torch.jit.is_scripting():
26
        return normalize_image_tensor(inpt, mean=mean, std=std, inplace=inplace)
27
28
29
30
31

    _log_api_usage_once(normalize)

    kernel = _get_kernel(normalize, type(inpt))
    return kernel(inpt, mean=mean, std=std, inplace=inplace)
32
33


34
@_register_kernel_internal(normalize, torch.Tensor)
35
@_register_kernel_internal(normalize, datapoints.Image)
36
37
38
39
40
41
42
def normalize_image_tensor(
    image: torch.Tensor, mean: List[float], std: List[float], inplace: bool = False
) -> torch.Tensor:
    if not image.is_floating_point():
        raise TypeError(f"Input tensor should be a float tensor. Got {image.dtype}.")

    if image.ndim < 3:
43
        raise ValueError(f"Expected tensor to be a tensor image of size (..., C, H, W). Got {image.shape}.")
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

    if isinstance(std, (tuple, list)):
        divzero = not all(std)
    elif isinstance(std, (int, float)):
        divzero = std == 0
    else:
        divzero = False
    if divzero:
        raise ValueError("std evaluated to zero, leading to division by zero.")

    dtype = image.dtype
    device = image.device
    mean = torch.as_tensor(mean, dtype=dtype, device=device)
    std = torch.as_tensor(std, dtype=dtype, device=device)
    if mean.ndim == 1:
        mean = mean.view(-1, 1, 1)
    if std.ndim == 1:
        std = std.view(-1, 1, 1)

    if inplace:
        image = image.sub_(mean)
    else:
        image = image.sub(mean)

    return image.div_(std)
69

70

71
@_register_kernel_internal(normalize, datapoints.Video)
72
73
74
75
def normalize_video(video: torch.Tensor, mean: List[float], std: List[float], inplace: bool = False) -> torch.Tensor:
    return normalize_image_tensor(video, mean, std, inplace=inplace)


76
77
78
79
@_register_explicit_noop(datapoints.BoundingBoxes, datapoints.Mask)
def gaussian_blur(
    inpt: datapoints._InputTypeJIT, kernel_size: List[int], sigma: Optional[List[float]] = None
) -> datapoints._InputTypeJIT:
80
    if torch.jit.is_scripting():
81
        return gaussian_blur_image_tensor(inpt, kernel_size=kernel_size, sigma=sigma)
82
83
84
85
86

    _log_api_usage_once(gaussian_blur)

    kernel = _get_kernel(gaussian_blur, type(inpt))
    return kernel(inpt, kernel_size=kernel_size, sigma=sigma)
87
88


89
def _get_gaussian_kernel1d(kernel_size: int, sigma: float, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
90
    lim = (kernel_size - 1) / (2.0 * math.sqrt(2.0) * sigma)
91
    x = torch.linspace(-lim, lim, steps=kernel_size, dtype=dtype, device=device)
92
    kernel1d = torch.softmax(x.pow_(2).neg_(), dim=0)
93
94
95
96
97
98
    return kernel1d


def _get_gaussian_kernel2d(
    kernel_size: List[int], sigma: List[float], dtype: torch.dtype, device: torch.device
) -> torch.Tensor:
99
100
    kernel1d_x = _get_gaussian_kernel1d(kernel_size[0], sigma[0], dtype, device)
    kernel1d_y = _get_gaussian_kernel1d(kernel_size[1], sigma[1], dtype, device)
101
102
103
104
    kernel2d = kernel1d_y.unsqueeze(-1) * kernel1d_x
    return kernel2d


105
@_register_kernel_internal(gaussian_blur, torch.Tensor)
106
@_register_kernel_internal(gaussian_blur, datapoints.Image)
107
def gaussian_blur_image_tensor(
108
    image: torch.Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None
109
) -> torch.Tensor:
110
    # TODO: consider deprecating integers from sigma on the future
111
112
    if isinstance(kernel_size, int):
        kernel_size = [kernel_size, kernel_size]
113
    elif len(kernel_size) != 2:
114
115
116
117
        raise ValueError(f"If kernel_size is a sequence its length should be 2. Got {len(kernel_size)}")
    for ksize in kernel_size:
        if ksize % 2 == 0 or ksize < 0:
            raise ValueError(f"kernel_size should have odd and positive integers. Got {kernel_size}")
118

119
120
    if sigma is None:
        sigma = [ksize * 0.15 + 0.35 for ksize in kernel_size]
121
122
123
124
125
126
127
128
129
130
131
132
133
    else:
        if isinstance(sigma, (list, tuple)):
            length = len(sigma)
            if length == 1:
                s = float(sigma[0])
                sigma = [s, s]
            elif length != 2:
                raise ValueError(f"If sigma is a sequence, its length should be 2. Got {length}")
        elif isinstance(sigma, (int, float)):
            s = float(sigma)
            sigma = [s, s]
        else:
            raise TypeError(f"sigma should be either float or sequence of floats. Got {type(sigma)}")
134
135
136
    for s in sigma:
        if s <= 0.0:
            raise ValueError(f"sigma should have positive values. Got {sigma}")
137

138
139
140
    if image.numel() == 0:
        return image

141
    dtype = image.dtype
142
    shape = image.shape
143
144
145
146
    ndim = image.ndim
    if ndim == 3:
        image = image.unsqueeze(dim=0)
    elif ndim > 4:
147
        image = image.reshape((-1,) + shape[-3:])
148

149
150
151
    fp = torch.is_floating_point(image)
    kernel = _get_gaussian_kernel2d(kernel_size, sigma, dtype=dtype if fp else torch.float32, device=image.device)
    kernel = kernel.expand(shape[-3], 1, kernel.shape[0], kernel.shape[1])
152

153
    output = image if fp else image.to(dtype=torch.float32)
154
155
156

    # padding = (left, right, top, bottom)
    padding = [kernel_size[0] // 2, kernel_size[0] // 2, kernel_size[1] // 2, kernel_size[1] // 2]
157
158
    output = torch_pad(output, padding, mode="reflect")
    output = conv2d(output, kernel, groups=shape[-3])
159

160
161
162
    if ndim == 3:
        output = output.squeeze(dim=0)
    elif ndim > 4:
163
        output = output.reshape(shape)
164

165
166
167
    if not fp:
        output = output.round_().to(dtype=dtype)

168
    return output
169
170


171
@_register_kernel_internal(gaussian_blur, PIL.Image.Image)
172
def gaussian_blur_image_pil(
173
    image: PIL.Image.Image, kernel_size: List[int], sigma: Optional[List[float]] = None
174
) -> PIL.Image.Image:
175
    t_img = pil_to_tensor(image)
176
    output = gaussian_blur_image_tensor(t_img, kernel_size=kernel_size, sigma=sigma)
177
    return to_pil_image(output, mode=image.mode)
178
179


180
@_register_kernel_internal(gaussian_blur, datapoints.Video)
181
182
183
def gaussian_blur_video(
    video: torch.Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None
) -> torch.Tensor:
184
    return gaussian_blur_image_tensor(video, kernel_size, sigma)
185
186


187
@_register_unsupported_type(PIL.Image.Image)
188
189
def to_dtype(
    inpt: datapoints._InputTypeJIT, dtype: torch.dtype = torch.float, scale: bool = False
Philip Meier's avatar
Philip Meier committed
190
) -> datapoints._InputTypeJIT:
191
192
193
194
195
196
197
    if torch.jit.is_scripting():
        return to_dtype_image_tensor(inpt, dtype=dtype, scale=scale)

    _log_api_usage_once(to_dtype)

    kernel = _get_kernel(to_dtype, type(inpt))
    return kernel(inpt, dtype=dtype, scale=scale)
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214


def _num_value_bits(dtype: torch.dtype) -> int:
    if dtype == torch.uint8:
        return 8
    elif dtype == torch.int8:
        return 7
    elif dtype == torch.int16:
        return 15
    elif dtype == torch.int32:
        return 31
    elif dtype == torch.int64:
        return 63
    else:
        raise TypeError(f"Number of value bits is only defined for integer dtypes, but got {dtype}.")


215
@_register_kernel_internal(to_dtype, torch.Tensor)
216
@_register_kernel_internal(to_dtype, datapoints.Image)
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
def to_dtype_image_tensor(image: torch.Tensor, dtype: torch.dtype = torch.float, scale: bool = False) -> torch.Tensor:

    if image.dtype == dtype:
        return image
    elif not scale:
        return image.to(dtype)

    float_input = image.is_floating_point()
    if torch.jit.is_scripting():
        # TODO: remove this branch as soon as `dtype.is_floating_point` is supported by JIT
        float_output = torch.tensor(0, dtype=dtype).is_floating_point()
    else:
        float_output = dtype.is_floating_point

    if float_input:
        # float to float
        if float_output:
            return image.to(dtype)

        # float to int
        if (image.dtype == torch.float32 and dtype in (torch.int32, torch.int64)) or (
            image.dtype == torch.float64 and dtype == torch.int64
        ):
            raise RuntimeError(f"The conversion from {image.dtype} to {dtype} cannot be performed safely.")

        # For data in the range `[0.0, 1.0]`, just multiplying by the maximum value of the integer range and converting
        # to the integer dtype  is not sufficient. For example, `torch.rand(...).mul(255).to(torch.uint8)` will only
        # be `255` if the input is exactly `1.0`. See https://github.com/pytorch/vision/pull/2078#issuecomment-612045321
        # for a detailed analysis.
        # To mitigate this, we could round before we convert to the integer dtype, but this is an extra operation.
        # Instead, we can also multiply by the maximum value plus something close to `1`. See
        # https://github.com/pytorch/vision/pull/2078#issuecomment-613524965 for details.
        eps = 1e-3
        max_value = float(_max_value(dtype))
        # We need to scale first since the conversion would otherwise turn the input range `[0.0, 1.0]` into the
        # discrete set `{0, 1}`.
        return image.mul(max_value + 1.0 - eps).to(dtype)
    else:
        # int to float
        if float_output:
            return image.to(dtype).mul_(1.0 / _max_value(image.dtype))

        # int to int
        num_value_bits_input = _num_value_bits(image.dtype)
        num_value_bits_output = _num_value_bits(dtype)

        if num_value_bits_input > num_value_bits_output:
            return image.bitwise_right_shift(num_value_bits_input - num_value_bits_output).to(dtype)
        else:
            return image.to(dtype).bitwise_left_shift_(num_value_bits_output - num_value_bits_input)


# We encourage users to use to_dtype() instead but we keep this for BC
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float32) -> torch.Tensor:
    return to_dtype_image_tensor(image, dtype=dtype, scale=True)


274
@_register_kernel_internal(to_dtype, datapoints.Video)
275
276
277
278
def to_dtype_video(video: torch.Tensor, dtype: torch.dtype = torch.float, scale: bool = False) -> torch.Tensor:
    return to_dtype_image_tensor(video, dtype, scale=scale)


279
280
281
282
283
284
285
@_register_kernel_internal(to_dtype, datapoints.BoundingBoxes, datapoint_wrapper=False)
@_register_kernel_internal(to_dtype, datapoints.Mask, datapoint_wrapper=False)
def _to_dtype_tensor_dispatch(
    inpt: datapoints._InputTypeJIT, dtype: torch.dtype, scale: bool = False
) -> datapoints._InputTypeJIT:
    # We don't need to unwrap and rewrap here, since Datapoint.to() preserves the type
    return inpt.to(dtype)