boxes.py 5.62 KB
Newer Older
1
import torch
eellison's avatar
eellison committed
2
3
from torch.jit.annotations import Tuple
from torch import Tensor
4
import torchvision
5
6
7


def nms(boxes, scores, iou_threshold):
8
    # type: (Tensor, Tensor, float) -> Tensor
9
10
11
12
13
14
15
16
    """
    Performs non-maximum suppression (NMS) on the boxes according
    to their intersection-over-union (IoU).

    NMS iteratively removes lower scoring boxes which have an
    IoU greater than iou_threshold with another (higher scoring)
    box.

Francisco Massa's avatar
Francisco Massa committed
17
18
19
    If multiple boxes have the exact same score and satisfy the IoU
    criterion with respect to a reference box, the selected box is
    not guaranteed to be the same between CPU and GPU. This is similar
20
21
    to the behavior of argsort in PyTorch when repeated values are present.

22
23
24
25
26
27
28
29
30
    Parameters
    ----------
    boxes : Tensor[N, 4])
        boxes to perform NMS on. They
        are expected to be in (x1, y1, x2, y2) format
    scores : Tensor[N]
        scores for each one of the boxes
    iou_threshold : float
        discards all overlapping
31
        boxes with IoU > iou_threshold
32

33
34
35
36
37
38
    Returns
    -------
    keep : Tensor
        int64 tensor with the indices
        of the elements that have been kept
        by NMS, sorted in decreasing order of scores
39
    """
40
    return torch.ops.torchvision.nms(boxes, scores, iou_threshold)
41
42


43
@torch.jit._script_if_tracing
44
def batched_nms(boxes, scores, idxs, iou_threshold):
45
    # type: (Tensor, Tensor, Tensor, float) -> Tensor
46
47
48
49
50
51
    """
    Performs non-maximum suppression in a batched fashion.

    Each index value correspond to a category, and NMS
    will not be applied between elements of different categories.

52
53
54
55
56
57
58
59
60
61
62
    Parameters
    ----------
    boxes : Tensor[N, 4]
        boxes where NMS will be performed. They
        are expected to be in (x1, y1, x2, y2) format
    scores : Tensor[N]
        scores for each one of the boxes
    idxs : Tensor[N]
        indices of the categories for each one of the boxes.
    iou_threshold : float
        discards all overlapping boxes
63
        with IoU > iou_threshold
64

65
66
67
68
69
70
    Returns
    -------
    keep : Tensor
        int64 tensor with the indices of
        the elements that have been kept by NMS, sorted
        in decreasing order of scores
71
    """
72
73
    if boxes.numel() == 0:
        return torch.empty((0,), dtype=torch.int64, device=boxes.device)
74
75
76
77
    # strategy: in order to perform NMS independently per class.
    # we add an offset to all the boxes. The offset is dependent
    # only on the class idx, and is large enough so that boxes
    # from different classes do not overlap
78
79
80
81
82
83
    else:
        max_coordinate = boxes.max()
        offsets = idxs.to(boxes) * (max_coordinate + torch.tensor(1).to(boxes))
        boxes_for_nms = boxes + offsets[:, None]
        keep = nms(boxes_for_nms, scores, iou_threshold)
        return keep
84
85
86


def remove_small_boxes(boxes, min_size):
87
    # type: (Tensor, float) -> Tensor
88
89
90
91
    """
    Remove boxes which contains at least one side smaller than min_size.

    Arguments:
92
        boxes (Tensor[N, 4]): boxes in (x1, y1, x2, y2) format
eellison's avatar
eellison committed
93
        min_size (float): minimum size
94
95
96
97
98

    Returns:
        keep (Tensor[K]): indices of the boxes that have both sides
            larger than min_size
    """
99
100
101
102
103
104
105
    ws, hs = boxes[:, 2] - boxes[:, 0], boxes[:, 3] - boxes[:, 1]
    keep = (ws >= min_size) & (hs >= min_size)
    keep = keep.nonzero().squeeze(1)
    return keep


def clip_boxes_to_image(boxes, size):
106
    # type: (Tensor, Tuple[int, int]) -> Tensor
107
    """
108
109
    Clip boxes so that they lie inside an image of size `size`.

110
    Arguments:
111
        boxes (Tensor[N, 4]): boxes in (x1, y1, x2, y2) format
112
        size (Tuple[height, width]): size of the image
113
114
115
116
117
118
119
120

    Returns:
        clipped_boxes (Tensor[N, 4])
    """
    dim = boxes.dim()
    boxes_x = boxes[..., 0::2]
    boxes_y = boxes[..., 1::2]
    height, width = size
121
122
123
124
125
126
127
128
129
130

    if torchvision._is_tracing():
        boxes_x = torch.max(boxes_x, torch.tensor(0, dtype=boxes.dtype, device=boxes.device))
        boxes_x = torch.min(boxes_x, torch.tensor(width, dtype=boxes.dtype, device=boxes.device))
        boxes_y = torch.max(boxes_y, torch.tensor(0, dtype=boxes.dtype, device=boxes.device))
        boxes_y = torch.min(boxes_y, torch.tensor(height, dtype=boxes.dtype, device=boxes.device))
    else:
        boxes_x = boxes_x.clamp(min=0, max=width)
        boxes_y = boxes_y.clamp(min=0, max=height)

131
132
133
134
135
136
137
    clipped_boxes = torch.stack((boxes_x, boxes_y), dim=dim)
    return clipped_boxes.reshape(boxes.shape)


def box_area(boxes):
    """
    Computes the area of a set of bounding boxes, which are specified by its
138
    (x1, y1, x2, y2) coordinates.
139
140
141

    Arguments:
        boxes (Tensor[N, 4]): boxes for which the area will be computed. They
142
            are expected to be in (x1, y1, x2, y2) format
143
144
145
146
147
148
149
150
151
152
153
154
155

    Returns:
        area (Tensor[N]): area for each box
    """
    return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])


# implementation from https://github.com/kuangliu/torchcv/blob/master/torchcv/utils/box.py
# with slight modifications
def box_iou(boxes1, boxes2):
    """
    Return intersection-over-union (Jaccard index) of boxes.

156
157
    Both sets of boxes are expected to be in (x1, y1, x2, y2) format.

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    Arguments:
        boxes1 (Tensor[N, 4])
        boxes2 (Tensor[M, 4])

    Returns:
        iou (Tensor[N, M]): the NxM matrix containing the pairwise
            IoU values for every element in boxes1 and boxes2
    """
    area1 = box_area(boxes1)
    area2 = box_area(boxes2)

    lt = torch.max(boxes1[:, None, :2], boxes2[:, :2])  # [N,M,2]
    rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])  # [N,M,2]

    wh = (rb - lt).clamp(min=0)  # [N,M,2]
    inter = wh[:, :, 0] * wh[:, :, 1]  # [N,M]

    iou = inter / (area1[:, None] + area2 - inter)
    return iou