feature_pyramid_network.py 8.37 KB
Newer Older
1
from collections import OrderedDict
2
from typing import Callable, Dict, List, Optional, Tuple
3
4

import torch.nn.functional as F
eellison's avatar
eellison committed
5
6
from torch import nn, Tensor

7
from ..ops.misc import Conv2dNormActivation
8
9
from ..utils import _log_api_usage_once

10
11
12
13
14

class ExtraFPNBlock(nn.Module):
    """
    Base class for the extra block in the FPN.

15
    Args:
16
17
18
19
20
21
22
23
24
25
        results (List[Tensor]): the result of the FPN
        x (List[Tensor]): the original feature maps
        names (List[str]): the names for each one of the
            original feature maps

    Returns:
        results (List[Tensor]): the extended set of results
            of the FPN
        names (List[str]): the extended set of names for the results
    """
26

27
28
29
30
31
32
33
    def forward(
        self,
        results: List[Tensor],
        x: List[Tensor],
        names: List[str],
    ) -> Tuple[List[Tensor], List[str]]:
        pass
34
35
36
37


class FeaturePyramidNetwork(nn.Module):
    """
38
39
40
    Module that adds a FPN from on top of a set of feature maps. This is based on
    `"Feature Pyramid Network for Object Detection" <https://arxiv.org/abs/1612.03144>`_.

41
    The feature maps are currently supposed to be in increasing depth
42
43
44
45
46
    order.

    The input to the model is expected to be an OrderedDict[Tensor], containing
    the feature maps on top of which the FPN will be added.

47
    Args:
48
49
50
51
52
53
54
        in_channels_list (list[int]): number of channels for each feature map that
            is passed to the module
        out_channels (int): number of channels of the FPN representation
        extra_blocks (ExtraFPNBlock or None): if provided, extra operations will
            be performed. It is expected to take the fpn features, the original
            features and the names of the original features as input, and returns
            a new list of feature maps and their corresponding names
55
        norm_layer (callable, optional): Module specifying the normalization layer to use. Default: None
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

    Examples::

        >>> m = torchvision.ops.FeaturePyramidNetwork([10, 20, 30], 5)
        >>> # get some dummy data
        >>> x = OrderedDict()
        >>> x['feat0'] = torch.rand(1, 10, 64, 64)
        >>> x['feat2'] = torch.rand(1, 20, 16, 16)
        >>> x['feat3'] = torch.rand(1, 30, 8, 8)
        >>> # compute the FPN on top of x
        >>> output = m(x)
        >>> print([(k, v.shape) for k, v in output.items()])
        >>> # returns
        >>>   [('feat0', torch.Size([1, 5, 64, 64])),
        >>>    ('feat2', torch.Size([1, 5, 16, 16])),
        >>>    ('feat3', torch.Size([1, 5, 8, 8]))]

73
    """
74

75
76
    _version = 2

77
78
79
80
81
    def __init__(
        self,
        in_channels_list: List[int],
        out_channels: int,
        extra_blocks: Optional[ExtraFPNBlock] = None,
82
        norm_layer: Optional[Callable[..., nn.Module]] = None,
83
    ):
84
        super().__init__()
Kai Zhang's avatar
Kai Zhang committed
85
        _log_api_usage_once(self)
86
87
88
89
        self.inner_blocks = nn.ModuleList()
        self.layer_blocks = nn.ModuleList()
        for in_channels in in_channels_list:
            if in_channels == 0:
eellison's avatar
eellison committed
90
                raise ValueError("in_channels=0 is currently not supported")
91
92
93
94
95
96
            inner_block_module = Conv2dNormActivation(
                in_channels, out_channels, kernel_size=1, padding=0, norm_layer=norm_layer, activation_layer=None
            )
            layer_block_module = Conv2dNormActivation(
                out_channels, out_channels, kernel_size=3, norm_layer=norm_layer, activation_layer=None
            )
97
98
99
100
            self.inner_blocks.append(inner_block_module)
            self.layer_blocks.append(layer_block_module)

        # initialize parameters now to avoid modifying the initialization of top_blocks
101
        for m in self.modules():
102
103
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_uniform_(m.weight, a=1)
104
105
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
106
107

        if extra_blocks is not None:
108
109
            if not isinstance(extra_blocks, ExtraFPNBlock):
                raise TypeError(f"extra_blocks should be of type ExtraFPNBlock not {type(extra_blocks)}")
110
111
        self.extra_blocks = extra_blocks

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
    def _load_from_state_dict(
        self,
        state_dict,
        prefix,
        local_metadata,
        strict,
        missing_keys,
        unexpected_keys,
        error_msgs,
    ):
        version = local_metadata.get("version", None)

        if version is None or version < 2:
            num_blocks = len(self.inner_blocks)
            for block in ["inner_blocks", "layer_blocks"]:
                for i in range(num_blocks):
                    for type in ["weight", "bias"]:
                        old_key = f"{prefix}{block}.{i}.{type}"
                        new_key = f"{prefix}{block}.{i}.0.{type}"
131
132
                        if old_key in state_dict:
                            state_dict[new_key] = state_dict.pop(old_key)
133
134
135
136
137
138
139
140
141
142
143

        super()._load_from_state_dict(
            state_dict,
            prefix,
            local_metadata,
            strict,
            missing_keys,
            unexpected_keys,
            error_msgs,
        )

144
    def get_result_from_inner_blocks(self, x: Tensor, idx: int) -> Tensor:
eellison's avatar
eellison committed
145
146
147
148
        """
        This is equivalent to self.inner_blocks[idx](x),
        but torchscript doesn't support this yet
        """
149
        num_blocks = len(self.inner_blocks)
eellison's avatar
eellison committed
150
151
152
        if idx < 0:
            idx += num_blocks
        out = x
153
        for i, module in enumerate(self.inner_blocks):
eellison's avatar
eellison committed
154
155
156
157
            if i == idx:
                out = module(x)
        return out

158
    def get_result_from_layer_blocks(self, x: Tensor, idx: int) -> Tensor:
eellison's avatar
eellison committed
159
160
161
162
        """
        This is equivalent to self.layer_blocks[idx](x),
        but torchscript doesn't support this yet
        """
163
        num_blocks = len(self.layer_blocks)
eellison's avatar
eellison committed
164
165
166
        if idx < 0:
            idx += num_blocks
        out = x
167
        for i, module in enumerate(self.layer_blocks):
eellison's avatar
eellison committed
168
169
170
171
            if i == idx:
                out = module(x)
        return out

172
    def forward(self, x: Dict[str, Tensor]) -> Dict[str, Tensor]:
173
        """
174
175
        Computes the FPN for a set of feature maps.

176
        Args:
177
            x (OrderedDict[Tensor]): feature maps for each feature level.
178

179
180
        Returns:
            results (OrderedDict[Tensor]): feature maps after FPN layers.
181
                They are ordered from the highest resolution first.
182
183
184
185
186
        """
        # unpack OrderedDict into two lists for easier handling
        names = list(x.keys())
        x = list(x.values())

eellison's avatar
eellison committed
187
        last_inner = self.get_result_from_inner_blocks(x[-1], -1)
188
        results = []
eellison's avatar
eellison committed
189
190
191
192
        results.append(self.get_result_from_layer_blocks(last_inner, -1))

        for idx in range(len(x) - 2, -1, -1):
            inner_lateral = self.get_result_from_inner_blocks(x[idx], idx)
193
194
195
            feat_shape = inner_lateral.shape[-2:]
            inner_top_down = F.interpolate(last_inner, size=feat_shape, mode="nearest")
            last_inner = inner_lateral + inner_top_down
eellison's avatar
eellison committed
196
            results.insert(0, self.get_result_from_layer_blocks(last_inner, idx))
197
198
199
200
201
202
203
204
205
206
207

        if self.extra_blocks is not None:
            results, names = self.extra_blocks(results, x, names)

        # make it back an OrderedDict
        out = OrderedDict([(k, v) for k, v in zip(names, results)])

        return out


class LastLevelMaxPool(ExtraFPNBlock):
208
209
210
    """
    Applies a max_pool2d on top of the last feature map
    """
211

212
213
214
215
216
217
    def forward(
        self,
        x: List[Tensor],
        y: List[Tensor],
        names: List[str],
    ) -> Tuple[List[Tensor], List[str]]:
218
219
220
221
222
223
224
225
226
        names.append("pool")
        x.append(F.max_pool2d(x[-1], 1, 2, 0))
        return x, names


class LastLevelP6P7(ExtraFPNBlock):
    """
    This module is used in RetinaNet to generate extra layers, P6 and P7.
    """
227

228
    def __init__(self, in_channels: int, out_channels: int):
229
        super().__init__()
230
231
232
233
234
235
236
        self.p6 = nn.Conv2d(in_channels, out_channels, 3, 2, 1)
        self.p7 = nn.Conv2d(out_channels, out_channels, 3, 2, 1)
        for module in [self.p6, self.p7]:
            nn.init.kaiming_uniform_(module.weight, a=1)
            nn.init.constant_(module.bias, 0)
        self.use_P5 = in_channels == out_channels

237
238
239
240
241
242
    def forward(
        self,
        p: List[Tensor],
        c: List[Tensor],
        names: List[str],
    ) -> Tuple[List[Tensor], List[str]]:
243
244
245
246
247
248
249
        p5, c5 = p[-1], c[-1]
        x = p5 if self.use_P5 else c5
        p6 = self.p6(x)
        p7 = self.p7(F.relu(p6))
        p.extend([p6, p7])
        names.extend(["p6", "p7"])
        return p, names