builtin_dataset_mocks.py 51.5 KB
Newer Older
Lezwon Castelino's avatar
Lezwon Castelino committed
1
import bz2
2
3
import collections.abc
import csv
4
5
import functools
import gzip
6
import io
7
import itertools
Philip Meier's avatar
Philip Meier committed
8
import json
9
10
11
import lzma
import pathlib
import pickle
12
import random
13
import unittest.mock
14
import warnings
15
import xml.etree.ElementTree as ET
16
from collections import defaultdict, Counter
17
18

import numpy as np
Philip Meier's avatar
Philip Meier committed
19
import PIL.Image
20
21
import pytest
import torch
22
from datasets_utils import make_zip, make_tar, create_image_folder, create_image_file, combinations_grid
23
from torch.nn.functional import one_hot
24
from torch.testing import make_tensor as _make_tensor
25
from torchvision._utils import sequence_to_str
26
from torchvision.prototype import datasets
Philip Meier's avatar
Philip Meier committed
27

28
make_tensor = functools.partial(_make_tensor, device="cpu")
Philip Meier's avatar
Philip Meier committed
29
make_scalar = functools.partial(make_tensor, ())
30
31


32
__all__ = ["DATASET_MOCKS", "parametrize_dataset_mocks"]
33
34


35
class DatasetMock:
36
37
38
    def __init__(self, name, *, mock_data_fn, configs):
        # FIXME: error handling for unknown names
        self.name = name
39
        self.mock_data_fn = mock_data_fn
40
        self.configs = configs
41

42
43
    def _parse_mock_info(self, mock_info):
        if mock_info is None:
44
45
46
47
            raise pytest.UsageError(
                f"The mock data function for dataset '{self.name}' returned nothing. It needs to at least return an "
                f"integer indicating the number of samples for the current `config`."
            )
48
49
50
        elif isinstance(mock_info, int):
            mock_info = dict(num_samples=mock_info)
        elif not isinstance(mock_info, dict):
51
            raise pytest.UsageError(
52
53
54
55
56
57
58
59
60
                f"The mock data function for dataset '{self.name}' returned a {type(mock_info)}. The returned object "
                f"should be a dictionary containing at least the number of samples for the key `'num_samples'`. If no "
                f"additional information is required for specific tests, the number of samples can also be returned as "
                f"an integer."
            )
        elif "num_samples" not in mock_info:
            raise pytest.UsageError(
                f"The dictionary returned by the mock data function for dataset '{self.name}' has to contain a "
                f"`'num_samples'` entry indicating the number of samples."
61
            )
62

63
        return mock_info
64

65
66
67
    def prepare(self, home, config):
        root = home / self.name
        root.mkdir(exist_ok=True)
68

69
        mock_info = self._parse_mock_info(self.mock_data_fn(root, config))
70

71
72
73
74
        with unittest.mock.patch.object(datasets.utils.Dataset, "__init__"):
            required_file_names = {
                resource.file_name for resource in datasets.load(self.name, root=root, **config)._resources()
            }
75
76
77
78
79
80
81
        available_file_names = {path.name for path in root.glob("*")}
        missing_file_names = required_file_names - available_file_names
        if missing_file_names:
            raise pytest.UsageError(
                f"Dataset '{self.name}' requires the files {sequence_to_str(sorted(missing_file_names))} "
                f"for {config}, but they were not created by the mock data function."
            )
82

83
        return mock_info
84
85


86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
def config_id(name, config):
    parts = [name]
    for name, value in config.items():
        if isinstance(value, bool):
            part = ("" if value else "no_") + name
        else:
            part = str(value)
        parts.append(part)
    return "-".join(parts)


def parametrize_dataset_mocks(*dataset_mocks, marks=None):
    mocks = {}
    for mock in dataset_mocks:
        if isinstance(mock, DatasetMock):
            mocks[mock.name] = mock
        elif isinstance(mock, collections.abc.Mapping):
            mocks.update(mock)
        else:
            raise pytest.UsageError(
                f"The positional arguments passed to `parametrize_dataset_mocks` can either be a `DatasetMock`, "
                f"a sequence of `DatasetMock`'s, or a mapping of names to `DatasetMock`'s, "
                f"but got {mock} instead."
            )
    dataset_mocks = mocks

    if marks is None:
        marks = {}
    elif not isinstance(marks, collections.abc.Mapping):
        raise pytest.UsageError()

    return pytest.mark.parametrize(
        ("dataset_mock", "config"),
        [
            pytest.param(dataset_mock, config, id=config_id(name, config), marks=marks.get(name, ()))
            for name, dataset_mock in dataset_mocks.items()
            for config in dataset_mock.configs
        ],
    )


127
DATASET_MOCKS = {}
128

129

130
131
132
133
134
135
136
137
138
139
def register_mock(name=None, *, configs):
    def wrapper(mock_data_fn):
        nonlocal name
        if name is None:
            name = mock_data_fn.__name__
        DATASET_MOCKS[name] = DatasetMock(name, mock_data_fn=mock_data_fn, configs=configs)

        return mock_data_fn

    return wrapper
140

141
142

class MNISTMockData:
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    _DTYPES_ID = {
        torch.uint8: 8,
        torch.int8: 9,
        torch.int16: 11,
        torch.int32: 12,
        torch.float32: 13,
        torch.float64: 14,
    }

    @classmethod
    def _magic(cls, dtype, ndim):
        return cls._DTYPES_ID[dtype] * 256 + ndim + 1

    @staticmethod
    def _encode(t):
        return torch.tensor(t, dtype=torch.int32).numpy().tobytes()[::-1]

    @staticmethod
    def _big_endian_dtype(dtype):
        np_dtype = getattr(np, str(dtype).replace("torch.", ""))().dtype
        return np.dtype(f">{np_dtype.kind}{np_dtype.itemsize}")

    @classmethod
    def _create_binary_file(cls, root, filename, *, num_samples, shape, dtype, compressor, low=0, high):
        with compressor(root / filename, "wb") as fh:
            for meta in (cls._magic(dtype, len(shape)), num_samples, *shape):
                fh.write(cls._encode(meta))

            data = make_tensor((num_samples, *shape), dtype=dtype, low=low, high=high)

            fh.write(data.numpy().astype(cls._big_endian_dtype(dtype)).tobytes())

    @classmethod
    def generate(
        cls,
        root,
        *,
        num_categories,
        num_samples=None,
        images_file,
        labels_file,
        image_size=(28, 28),
        image_dtype=torch.uint8,
        label_size=(),
        label_dtype=torch.uint8,
        compressor=None,
    ):
        if num_samples is None:
            num_samples = num_categories
        if compressor is None:
            compressor = gzip.open

        cls._create_binary_file(
            root,
            images_file,
            num_samples=num_samples,
            shape=image_size,
            dtype=image_dtype,
            compressor=compressor,
            high=float("inf"),
        )
        cls._create_binary_file(
            root,
            labels_file,
            num_samples=num_samples,
            shape=label_size,
            dtype=label_dtype,
            compressor=compressor,
            high=num_categories,
        )

        return num_samples


217
218
def mnist(root, config):
    prefix = "train" if config["split"] == "train" else "t10k"
219
    return MNISTMockData.generate(
220
        root,
221
222
223
        num_categories=10,
        images_file=f"{prefix}-images-idx3-ubyte.gz",
        labels_file=f"{prefix}-labels-idx1-ubyte.gz",
224
225
226
    )


227
228
229
230
231
232
DATASET_MOCKS.update(
    {
        name: DatasetMock(name, mock_data_fn=mnist, configs=combinations_grid(split=("train", "test")))
        for name in ["mnist", "fashionmnist", "kmnist"]
    }
)
233
234


235
236
237
238
@register_mock(
    configs=combinations_grid(
        split=("train", "test"),
        image_set=("Balanced", "By_Merge", "By_Class", "Letters", "Digits", "MNIST"),
239
    )
240
241
)
def emnist(root, config):
242
    num_samples_map = {}
243
    file_names = set()
244
245
246
247
248
    for split, image_set in itertools.product(
        ("train", "test"),
        ("Balanced", "By_Merge", "By_Class", "Letters", "Digits", "MNIST"),
    ):
        prefix = f"emnist-{image_set.replace('_', '').lower()}-{split}"
249
250
251
        images_file = f"{prefix}-images-idx3-ubyte.gz"
        labels_file = f"{prefix}-labels-idx1-ubyte.gz"
        file_names.update({images_file, labels_file})
252
        num_samples_map[(split, image_set)] = MNISTMockData.generate(
253
            root,
254
255
256
            # The image sets that merge some lower case letters in their respective upper case variant, still use dense
            # labels in the data files. Thus, num_categories != len(categories) there.
            num_categories=47 if config["image_set"] in ("Balanced", "By_Merge") else 62,
257
258
            images_file=images_file,
            labels_file=labels_file,
259
260
261
262
        )

    make_zip(root, "emnist-gzip.zip", *file_names)

263
    return num_samples_map[(config["split"], config["image_set"])]
264
265


266
267
268
269
@register_mock(configs=combinations_grid(split=("train", "test", "test10k", "test50k", "nist")))
def qmnist(root, config):
    num_categories = 10
    if config["split"] == "train":
270
271
272
273
        num_samples = num_samples_gen = num_categories + 2
        prefix = "qmnist-train"
        suffix = ".gz"
        compressor = gzip.open
274
    elif config["split"].startswith("test"):
275
276
277
        # The split 'test50k' is defined as the last 50k images beginning at index 10000. Thus, we need to create
        # more than 10000 images for the dataset to not be empty.
        num_samples_gen = 10001
278
279
280
281
        num_samples = {
            "test": num_samples_gen,
            "test10k": min(num_samples_gen, 10_000),
            "test50k": num_samples_gen - 10_000,
282
        }[config["split"]]
283
284
285
        prefix = "qmnist-test"
        suffix = ".gz"
        compressor = gzip.open
286
    else:  # config["split"] == "nist"
287
288
289
290
291
        num_samples = num_samples_gen = num_categories + 3
        prefix = "xnist"
        suffix = ".xz"
        compressor = lzma.open

292
    MNISTMockData.generate(
293
294
295
296
297
298
299
300
301
        root,
        num_categories=num_categories,
        num_samples=num_samples_gen,
        images_file=f"{prefix}-images-idx3-ubyte{suffix}",
        labels_file=f"{prefix}-labels-idx2-int{suffix}",
        label_size=(8,),
        label_dtype=torch.int32,
        compressor=compressor,
    )
302
    return num_samples
303
304


305
class CIFARMockData:
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
    NUM_PIXELS = 32 * 32 * 3

    @classmethod
    def _create_batch_file(cls, root, name, *, num_categories, labels_key, num_samples=1):
        content = {
            "data": make_tensor((num_samples, cls.NUM_PIXELS), dtype=torch.uint8).numpy(),
            labels_key: torch.randint(0, num_categories, size=(num_samples,)).tolist(),
        }
        with open(pathlib.Path(root) / name, "wb") as fh:
            pickle.dump(content, fh)

    @classmethod
    def generate(
        cls,
        root,
        name,
        *,
        folder,
        train_files,
        test_files,
        num_categories,
        labels_key,
    ):
        folder = root / folder
        folder.mkdir()
        files = (*train_files, *test_files)
        for file in files:
            cls._create_batch_file(
                folder,
                file,
                num_categories=num_categories,
                labels_key=labels_key,
            )

        make_tar(root, name, folder, compression="gz")


343
344
@register_mock(configs=combinations_grid(split=("train", "test")))
def cifar10(root, config):
345
346
347
    train_files = [f"data_batch_{idx}" for idx in range(1, 6)]
    test_files = ["test_batch"]

348
    CIFARMockData.generate(
349
350
351
352
353
354
355
356
357
        root=root,
        name="cifar-10-python.tar.gz",
        folder=pathlib.Path("cifar-10-batches-py"),
        train_files=train_files,
        test_files=test_files,
        num_categories=10,
        labels_key="labels",
    )

358
    return len(train_files if config["split"] == "train" else test_files)
359
360


361
362
@register_mock(configs=combinations_grid(split=("train", "test")))
def cifar100(root, config):
363
364
365
    train_files = ["train"]
    test_files = ["test"]

366
    CIFARMockData.generate(
367
368
369
370
371
372
373
374
375
        root=root,
        name="cifar-100-python.tar.gz",
        folder=pathlib.Path("cifar-100-python"),
        train_files=train_files,
        test_files=test_files,
        num_categories=100,
        labels_key="fine_labels",
    )

376
    return len(train_files if config["split"] == "train" else test_files)
377
378


379
380
@register_mock(configs=[dict()])
def caltech101(root, config):
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
    def create_ann_file(root, name):
        import scipy.io

        box_coord = make_tensor((1, 4), dtype=torch.int32, low=0).numpy().astype(np.uint16)
        obj_contour = make_tensor((2, int(torch.randint(3, 6, size=()))), dtype=torch.float64, low=0).numpy()

        scipy.io.savemat(str(pathlib.Path(root) / name), dict(box_coord=box_coord, obj_contour=obj_contour))

    def create_ann_folder(root, name, file_name_fn, num_examples):
        root = pathlib.Path(root) / name
        root.mkdir(parents=True)

        for idx in range(num_examples):
            create_ann_file(root, file_name_fn(idx))

    images_root = root / "101_ObjectCategories"
    anns_root = root / "Annotations"

399
400
401
402
403
    image_category_map = {
        "Faces": "Faces_2",
        "Faces_easy": "Faces_3",
        "Motorbikes": "Motorbikes_16",
        "airplanes": "Airplanes_Side_2",
404
405
    }

406
407
    categories = ["Faces", "Faces_easy", "Motorbikes", "airplanes", "yin_yang"]

408
    num_images_per_category = 2
409
    for category in categories:
410
411
412
413
414
415
416
417
        create_image_folder(
            root=images_root,
            name=category,
            file_name_fn=lambda idx: f"image_{idx + 1:04d}.jpg",
            num_examples=num_images_per_category,
        )
        create_ann_folder(
            root=anns_root,
418
            name=image_category_map.get(category, category),
419
420
421
422
423
424
425
426
427
            file_name_fn=lambda idx: f"annotation_{idx + 1:04d}.mat",
            num_examples=num_images_per_category,
        )

    (images_root / "BACKGROUND_Goodle").mkdir()
    make_tar(root, f"{images_root.name}.tar.gz", images_root, compression="gz")

    make_tar(root, f"{anns_root.name}.tar", anns_root)

428
    return num_images_per_category * len(categories)
429
430


431
432
@register_mock(configs=[dict()])
def caltech256(root, config):
433
434
435
    dir = root / "256_ObjectCategories"
    num_images_per_category = 2

436
437
438
439
440
441
442
443
    categories = [
        (1, "ak47"),
        (127, "laptop-101"),
        (198, "spider"),
        (257, "clutter"),
    ]

    for category_idx, category in categories:
444
445
        files = create_image_folder(
            dir,
446
447
            name=f"{category_idx:03d}.{category}",
            file_name_fn=lambda image_idx: f"{category_idx:03d}_{image_idx + 1:04d}.jpg",
448
449
450
451
452
453
454
            num_examples=num_images_per_category,
        )
        if category == "spider":
            open(files[0].parent / "RENAME2", "w").close()

    make_tar(root, f"{dir.name}.tar", dir)

455
    return num_images_per_category * len(categories)
456
457


458
459
@register_mock(configs=combinations_grid(split=("train", "val", "test")))
def imagenet(root, config):
460
    from scipy.io import savemat
461

462
463
464
465
    info = datasets.info("imagenet")

    if config["split"] == "train":
        num_samples = len(info["wnids"])
466
        archive_name = "ILSVRC2012_img_train.tar"
467

468
        files = []
469
        for wnid in info["wnids"]:
470
471
            create_image_folder(
                root=root,
472
473
474
475
                name=wnid,
                file_name_fn=lambda image_idx: f"{wnid}_{image_idx:04d}.JPEG",
                num_examples=1,
            )
476
            files.append(make_tar(root, f"{wnid}.tar"))
477
    elif config["split"] == "val":
478
        num_samples = 3
479
480
        archive_name = "ILSVRC2012_img_val.tar"
        files = [create_image_file(root, f"ILSVRC2012_val_{idx + 1:08d}.JPEG") for idx in range(num_samples)]
481

482
483
484
        devkit_root = root / "ILSVRC2012_devkit_t12"
        data_root = devkit_root / "data"
        data_root.mkdir(parents=True)
485

486
        with open(data_root / "ILSVRC2012_validation_ground_truth.txt", "w") as file:
487
            for label in torch.randint(0, len(info["wnids"]), (num_samples,)).tolist():
488
                file.write(f"{label}\n")
489

490
491
492
        num_children = 0
        synsets = [
            (idx, wnid, category, "", num_children, [], 0, 0)
493
            for idx, (category, wnid) in enumerate(zip(info["categories"], info["wnids"]), 1)
494
495
496
        ]
        num_children = 1
        synsets.extend((0, "", "", "", num_children, [], 0, 0) for _ in range(5))
497
498
499
500
        with warnings.catch_warnings():
            # The warning is not for savemat, but rather for some internals savemet is using
            warnings.filterwarnings("ignore", category=np.VisibleDeprecationWarning)
            savemat(data_root / "meta.mat", dict(synsets=synsets))
501
502

        make_tar(root, devkit_root.with_suffix(".tar.gz").name, compression="gz")
503
    else:  # config["split"] == "test"
504
505
506
507
508
        num_samples = 5
        archive_name = "ILSVRC2012_img_test_v10102019.tar"
        files = [create_image_file(root, f"ILSVRC2012_test_{idx + 1:08d}.JPEG") for idx in range(num_samples)]

    make_tar(root, archive_name, *files)
509
510

    return num_samples
Philip Meier's avatar
Philip Meier committed
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617


class CocoMockData:
    @classmethod
    def _make_images_archive(cls, root, name, *, num_samples):
        image_paths = create_image_folder(
            root, name, file_name_fn=lambda idx: f"{idx:012d}.jpg", num_examples=num_samples
        )

        images_meta = []
        for path in image_paths:
            with PIL.Image.open(path) as image:
                width, height = image.size
            images_meta.append(dict(file_name=path.name, id=int(path.stem), width=width, height=height))

        make_zip(root, f"{name}.zip")

        return images_meta

    @classmethod
    def _make_annotations_json(
        cls,
        root,
        name,
        *,
        images_meta,
        fn,
    ):
        num_anns_per_image = torch.randint(1, 5, (len(images_meta),))
        num_anns_total = int(num_anns_per_image.sum())
        ann_ids_iter = iter(torch.arange(num_anns_total)[torch.randperm(num_anns_total)])

        anns_meta = []
        for image_meta, num_anns in zip(images_meta, num_anns_per_image):
            for _ in range(num_anns):
                ann_id = int(next(ann_ids_iter))
                anns_meta.append(dict(fn(ann_id, image_meta), id=ann_id, image_id=image_meta["id"]))
        anns_meta.sort(key=lambda ann: ann["id"])

        with open(root / name, "w") as file:
            json.dump(dict(images=images_meta, annotations=anns_meta), file)

        return num_anns_per_image

    @staticmethod
    def _make_instances_data(ann_id, image_meta):
        def make_rle_segmentation():
            height, width = image_meta["height"], image_meta["width"]
            numel = height * width
            counts = []
            while sum(counts) <= numel:
                counts.append(int(torch.randint(5, 8, ())))
            if sum(counts) > numel:
                counts[-1] -= sum(counts) - numel
            return dict(counts=counts, size=[height, width])

        return dict(
            segmentation=make_rle_segmentation(),
            bbox=make_tensor((4,), dtype=torch.float32, low=0).tolist(),
            iscrowd=True,
            area=float(make_scalar(dtype=torch.float32)),
            category_id=int(make_scalar(dtype=torch.int64)),
        )

    @staticmethod
    def _make_captions_data(ann_id, image_meta):
        return dict(caption=f"Caption {ann_id} describing image {image_meta['id']}.")

    @classmethod
    def _make_annotations(cls, root, name, *, images_meta):
        num_anns_per_image = torch.zeros((len(images_meta),), dtype=torch.int64)
        for annotations, fn in (
            ("instances", cls._make_instances_data),
            ("captions", cls._make_captions_data),
        ):
            num_anns_per_image += cls._make_annotations_json(
                root, f"{annotations}_{name}.json", images_meta=images_meta, fn=fn
            )

        return int(num_anns_per_image.sum())

    @classmethod
    def generate(
        cls,
        root,
        *,
        year,
        num_samples,
    ):
        annotations_dir = root / "annotations"
        annotations_dir.mkdir()

        for split in ("train", "val"):
            config_name = f"{split}{year}"

            images_meta = cls._make_images_archive(root, config_name, num_samples=num_samples)
            cls._make_annotations(
                annotations_dir,
                config_name,
                images_meta=images_meta,
            )

        make_zip(root, f"annotations_trainval{year}.zip", annotations_dir)

        return num_samples


618
619
620
621
622
623
624
625
626
@register_mock(
    configs=combinations_grid(
        split=("train", "val"),
        year=("2017", "2014"),
        annotations=("instances", "captions", None),
    )
)
def coco(root, config):
    return CocoMockData.generate(root, year=config["year"], num_samples=5)
627
628


629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
class SBDMockData:
    _NUM_CATEGORIES = 20

    @classmethod
    def _make_split_files(cls, root_map):
        ids_map = {
            split: [f"2008_{idx:06d}" for idx in idcs]
            for split, idcs in (
                ("train", [0, 1, 2]),
                ("train_noval", [0, 2]),
                ("val", [3]),
            )
        }

        for split, ids in ids_map.items():
            with open(root_map[split] / f"{split}.txt", "w") as fh:
                fh.writelines(f"{id}\n" for id in ids)

        return sorted(set(itertools.chain(*ids_map.values()))), {split: len(ids) for split, ids in ids_map.items()}

    @classmethod
    def _make_anns_folder(cls, root, name, ids):
        from scipy.io import savemat

        anns_folder = root / name
        anns_folder.mkdir()

        sizes = torch.randint(1, 9, size=(len(ids), 2)).tolist()
        for id, size in zip(ids, sizes):
            savemat(
                anns_folder / f"{id}.mat",
                {
                    "GTcls": {
                        "Boundaries": cls._make_boundaries(size),
                        "Segmentation": cls._make_segmentation(size),
                    }
                },
            )
        return sizes

    @classmethod
    def _make_boundaries(cls, size):
        from scipy.sparse import csc_matrix

        return [
            [csc_matrix(torch.randint(0, 2, size=size, dtype=torch.uint8).numpy())] for _ in range(cls._NUM_CATEGORIES)
        ]

    @classmethod
    def _make_segmentation(cls, size):
        return torch.randint(0, cls._NUM_CATEGORIES + 1, size=size, dtype=torch.uint8).numpy()

    @classmethod
    def generate(cls, root):
        archive_folder = root / "benchmark_RELEASE"
        dataset_folder = archive_folder / "dataset"
        dataset_folder.mkdir(parents=True, exist_ok=True)

        ids, num_samples_map = cls._make_split_files(defaultdict(lambda: dataset_folder, {"train_noval": root}))
        sizes = cls._make_anns_folder(dataset_folder, "cls", ids)
        create_image_folder(
            dataset_folder, "img", lambda idx: f"{ids[idx]}.jpg", num_examples=len(ids), size=lambda idx: sizes[idx]
        )

        make_tar(root, "benchmark.tgz", archive_folder, compression="gz")

        return num_samples_map


698
699
700
@register_mock(configs=combinations_grid(split=("train", "val", "train_noval")))
def sbd(root, config):
    return SBDMockData.generate(root)[config["split"]]
701
702


703
704
@register_mock(configs=[dict()])
def semeion(root, config):
705
    num_samples = 3
706
    num_categories = 10
707
708

    images = torch.rand(num_samples, 256)
709
    labels = one_hot(torch.randint(num_categories, size=(num_samples,)), num_classes=num_categories)
710
711
712
713
    with open(root / "semeion.data", "w") as fh:
        for image, one_hot_label in zip(images, labels):
            image_columns = " ".join([f"{pixel.item():.4f}" for pixel in image])
            labels_columns = " ".join([str(label.item()) for label in one_hot_label])
714
            fh.write(f"{image_columns} {labels_columns} \n")
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741

    return num_samples


class VOCMockData:
    _TRAIN_VAL_FILE_NAMES = {
        "2007": "VOCtrainval_06-Nov-2007.tar",
        "2008": "VOCtrainval_14-Jul-2008.tar",
        "2009": "VOCtrainval_11-May-2009.tar",
        "2010": "VOCtrainval_03-May-2010.tar",
        "2011": "VOCtrainval_25-May-2011.tar",
        "2012": "VOCtrainval_11-May-2012.tar",
    }
    _TEST_FILE_NAMES = {
        "2007": "VOCtest_06-Nov-2007.tar",
    }

    @classmethod
    def _make_split_files(cls, root, *, year, trainval):
        split_folder = root / "ImageSets"

        if trainval:
            idcs_map = {
                "train": [0, 1, 2],
                "val": [3, 4],
            }
            idcs_map["trainval"] = [*idcs_map["train"], *idcs_map["val"]]
742
        else:
743
744
745
746
            idcs_map = {
                "test": [5],
            }
        ids_map = {split: [f"{year}_{idx:06d}" for idx in idcs] for split, idcs in idcs_map.items()}
747

748
749
750
751
752
753
        for task_sub_folder in ("Main", "Segmentation"):
            task_folder = split_folder / task_sub_folder
            task_folder.mkdir(parents=True, exist_ok=True)
            for split, ids in ids_map.items():
                with open(task_folder / f"{split}.txt", "w") as fh:
                    fh.writelines(f"{id}\n" for id in ids)
754

755
756
757
758
759
760
761
762
763
764
765
766
767
768
        return sorted(set(itertools.chain(*ids_map.values()))), {split: len(ids) for split, ids in ids_map.items()}

    @classmethod
    def _make_detection_anns_folder(cls, root, name, *, file_name_fn, num_examples):
        folder = root / name
        folder.mkdir(parents=True, exist_ok=True)

        for idx in range(num_examples):
            cls._make_detection_ann_file(folder, file_name_fn(idx))

    @classmethod
    def _make_detection_ann_file(cls, root, name):
        def add_child(parent, name, text=None):
            child = ET.SubElement(parent, name)
769
            child.text = str(text)
770
771
772
773
774
            return child

        def add_name(obj, name="dog"):
            add_child(obj, "name", name)

775
776
777
778
779
        def add_size(obj):
            obj = add_child(obj, "size")
            size = {"width": 0, "height": 0, "depth": 3}
            for name, text in size.items():
                add_child(obj, name, text)
780

781
        def add_bndbox(obj):
782
            obj = add_child(obj, "bndbox")
783
            bndbox = {"xmin": 1, "xmax": 2, "ymin": 3, "ymax": 4}
784
785
786
787
            for name, text in bndbox.items():
                add_child(obj, name, text)

        annotation = ET.Element("annotation")
788
        add_size(annotation)
789
        obj = add_child(annotation, "object")
790
791
        add_name(obj)
        add_bndbox(obj)
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815

        with open(root / name, "wb") as fh:
            fh.write(ET.tostring(annotation))

    @classmethod
    def generate(cls, root, *, year, trainval):
        archive_folder = root
        if year == "2011":
            archive_folder /= "TrainVal"
        data_folder = archive_folder / "VOCdevkit" / f"VOC{year}"
        data_folder.mkdir(parents=True, exist_ok=True)

        ids, num_samples_map = cls._make_split_files(data_folder, year=year, trainval=trainval)
        for make_folder_fn, name, suffix in [
            (create_image_folder, "JPEGImages", ".jpg"),
            (create_image_folder, "SegmentationClass", ".png"),
            (cls._make_detection_anns_folder, "Annotations", ".xml"),
        ]:
            make_folder_fn(data_folder, name, file_name_fn=lambda idx: ids[idx] + suffix, num_examples=len(ids))
        make_tar(root, (cls._TRAIN_VAL_FILE_NAMES if trainval else cls._TEST_FILE_NAMES)[year], data_folder)

        return num_samples_map


816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
@register_mock(
    configs=[
        *combinations_grid(
            split=("train", "val", "trainval"),
            year=("2007", "2008", "2009", "2010", "2011", "2012"),
            task=("detection", "segmentation"),
        ),
        *combinations_grid(
            split=("test",),
            year=("2007",),
            task=("detection", "segmentation"),
        ),
    ],
)
def voc(root, config):
    trainval = config["split"] != "test"
    return VOCMockData.generate(root, year=config["year"], trainval=trainval)[config["split"]]
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922


class CelebAMockData:
    @classmethod
    def _make_ann_file(cls, root, name, data, *, field_names=None):
        with open(root / name, "w") as file:
            if field_names:
                file.write(f"{len(data)}\r\n")
                file.write(" ".join(field_names) + "\r\n")
            file.writelines(" ".join(str(item) for item in row) + "\r\n" for row in data)

    _SPLIT_TO_IDX = {
        "train": 0,
        "val": 1,
        "test": 2,
    }

    @classmethod
    def _make_split_file(cls, root):
        num_samples_map = {"train": 4, "val": 3, "test": 2}

        data = [
            (f"{idx:06d}.jpg", cls._SPLIT_TO_IDX[split])
            for split, num_samples in num_samples_map.items()
            for idx in range(num_samples)
        ]
        cls._make_ann_file(root, "list_eval_partition.txt", data)

        image_file_names, _ = zip(*data)
        return image_file_names, num_samples_map

    @classmethod
    def _make_identity_file(cls, root, image_file_names):
        cls._make_ann_file(
            root, "identity_CelebA.txt", [(name, int(make_scalar(low=1, dtype=torch.int))) for name in image_file_names]
        )

    @classmethod
    def _make_attributes_file(cls, root, image_file_names):
        field_names = ("5_o_Clock_Shadow", "Young")
        data = [
            [name, *[" 1" if attr else "-1" for attr in make_tensor((len(field_names),), dtype=torch.bool)]]
            for name in image_file_names
        ]
        cls._make_ann_file(root, "list_attr_celeba.txt", data, field_names=(*field_names, ""))

    @classmethod
    def _make_bounding_boxes_file(cls, root, image_file_names):
        field_names = ("image_id", "x_1", "y_1", "width", "height")
        data = [
            [f"{name}  ", *[f"{coord:3d}" for coord in make_tensor((4,), low=0, dtype=torch.int).tolist()]]
            for name in image_file_names
        ]
        cls._make_ann_file(root, "list_bbox_celeba.txt", data, field_names=field_names)

    @classmethod
    def _make_landmarks_file(cls, root, image_file_names):
        field_names = ("lefteye_x", "lefteye_y", "rightmouth_x", "rightmouth_y")
        data = [
            [
                name,
                *[
                    f"{coord:4d}" if idx else coord
                    for idx, coord in enumerate(make_tensor((len(field_names),), low=0, dtype=torch.int).tolist())
                ],
            ]
            for name in image_file_names
        ]
        cls._make_ann_file(root, "list_landmarks_align_celeba.txt", data, field_names=field_names)

    @classmethod
    def generate(cls, root):
        image_file_names, num_samples_map = cls._make_split_file(root)

        image_files = create_image_folder(
            root, "img_align_celeba", file_name_fn=lambda idx: image_file_names[idx], num_examples=len(image_file_names)
        )
        make_zip(root, image_files[0].parent.with_suffix(".zip").name)

        for make_ann_file_fn in (
            cls._make_identity_file,
            cls._make_attributes_file,
            cls._make_bounding_boxes_file,
            cls._make_landmarks_file,
        ):
            make_ann_file_fn(root, image_file_names)

        return num_samples_map


923
924
925
@register_mock(configs=combinations_grid(split=("train", "val", "test")))
def celeba(root, config):
    return CelebAMockData.generate(root)[config["split"]]
926
927


928
929
930
@register_mock(configs=combinations_grid(split=("train", "val", "test")))
def country211(root, config):
    split_folder = pathlib.Path(root, "country211", "valid" if config["split"] == "val" else config["split"])
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
    split_folder.mkdir(parents=True, exist_ok=True)

    num_examples = {
        "train": 3,
        "val": 4,
        "test": 5,
    }[config["split"]]

    classes = ("AD", "BS", "GR")
    for cls in classes:
        create_image_folder(
            split_folder,
            name=cls,
            file_name_fn=lambda idx: f"{idx}.jpg",
            num_examples=num_examples,
        )
    make_tar(root, f"{split_folder.parent.name}.tgz", split_folder.parent, compression="gz")
    return num_examples * len(classes)


951
952
@register_mock(configs=combinations_grid(split=("train", "test")))
def food101(root, config):
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
    data_folder = root / "food-101"

    num_images_per_class = 3
    image_folder = data_folder / "images"
    categories = ["apple_pie", "baby_back_ribs", "waffles"]
    image_ids = []
    for category in categories:
        image_files = create_image_folder(
            image_folder,
            category,
            file_name_fn=lambda idx: f"{idx:04d}.jpg",
            num_examples=num_images_per_class,
        )
        image_ids.extend(path.relative_to(path.parents[1]).with_suffix("").as_posix() for path in image_files)

    meta_folder = data_folder / "meta"
    meta_folder.mkdir()

    with open(meta_folder / "classes.txt", "w") as file:
        for category in categories:
            file.write(f"{category}\n")

    splits = ["train", "test"]
    num_samples_map = {}
    for offset, split in enumerate(splits):
        image_ids_in_split = image_ids[offset :: len(splits)]
        num_samples_map[split] = len(image_ids_in_split)
        with open(meta_folder / f"{split}.txt", "w") as file:
            for image_id in image_ids_in_split:
                file.write(f"{image_id}\n")

    make_tar(root, f"{data_folder.name}.tar.gz", compression="gz")

986
    return num_samples_map[config["split"]]
987
988


989
990
@register_mock(configs=combinations_grid(split=("train", "val", "test"), fold=(1, 4, 10)))
def dtd(root, config):
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
    data_folder = root / "dtd"

    num_images_per_class = 3
    image_folder = data_folder / "images"
    categories = {"banded", "marbled", "zigzagged"}
    image_ids_per_category = {
        category: [
            str(path.relative_to(path.parents[1]).as_posix())
            for path in create_image_folder(
                image_folder,
                category,
                file_name_fn=lambda idx: f"{category}_{idx:04d}.jpg",
                num_examples=num_images_per_class,
            )
        ]
        for category in categories
    }

    meta_folder = data_folder / "labels"
    meta_folder.mkdir()

    with open(meta_folder / "labels_joint_anno.txt", "w") as file:
        for cls, image_ids in image_ids_per_category.items():
            for image_id in image_ids:
                joint_categories = random.choices(
                    list(categories - {cls}), k=int(torch.randint(len(categories) - 1, ()))
                )
                file.write(" ".join([image_id, *sorted([cls, *joint_categories])]) + "\n")

    image_ids = list(itertools.chain(*image_ids_per_category.values()))
    splits = ("train", "val", "test")
    num_samples_map = {}
    for fold in range(1, 11):
        random.shuffle(image_ids)
        for offset, split in enumerate(splits):
            image_ids_in_config = image_ids[offset :: len(splits)]
            with open(meta_folder / f"{split}{fold}.txt", "w") as file:
                file.write("\n".join(image_ids_in_config) + "\n")

1030
            num_samples_map[(split, fold)] = len(image_ids_in_config)
1031
1032
1033

    make_tar(root, "dtd-r1.0.1.tar.gz", data_folder, compression="gz")

1034
    return num_samples_map[config["split"], config["fold"]]
1035
1036


1037
1038
1039
1040
@register_mock(configs=combinations_grid(split=("train", "test")))
def fer2013(root, config):
    split = config["split"]
    num_samples = 5 if split == "train" else 3
1041

1042
    path = root / f"{split}.csv"
1043
    with open(path, "w", newline="") as file:
1044
        field_names = ["emotion"] if split == "train" else []
1045
1046
1047
1048
1049
1050
1051
1052
1053
        field_names.append("pixels")

        file.write(",".join(field_names) + "\n")

        writer = csv.DictWriter(file, fieldnames=field_names, quotechar='"', quoting=csv.QUOTE_NONNUMERIC)
        for _ in range(num_samples):
            rowdict = {
                "pixels": " ".join([str(int(pixel)) for pixel in torch.randint(256, (48 * 48,), dtype=torch.uint8)])
            }
1054
            if split == "train":
1055
1056
1057
1058
1059
1060
1061
1062
                rowdict["emotion"] = int(torch.randint(7, ()))
            writer.writerow(rowdict)

    make_zip(root, f"{path.name}.zip", path)

    return num_samples


1063
1064
1065
@register_mock(configs=combinations_grid(split=("train", "test")))
def gtsrb(root, config):
    num_examples_per_class = 5 if config["split"] == "train" else 3
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
    classes = ("00000", "00042", "00012")
    num_examples = num_examples_per_class * len(classes)

    csv_columns = ["Filename", "Width", "Height", "Roi.X1", "Roi.Y1", "Roi.X2", "Roi.Y2", "ClassId"]

    def _make_ann_file(path, num_examples, class_idx):
        if class_idx == "random":
            class_idx = torch.randint(1, len(classes) + 1, size=(1,)).item()

        with open(path, "w") as csv_file:
            writer = csv.DictWriter(csv_file, fieldnames=csv_columns, delimiter=";")
            writer.writeheader()
            for image_idx in range(num_examples):
                writer.writerow(
                    {
                        "Filename": f"{image_idx:05d}.ppm",
                        "Width": torch.randint(1, 100, size=()).item(),
                        "Height": torch.randint(1, 100, size=()).item(),
                        "Roi.X1": torch.randint(1, 100, size=()).item(),
                        "Roi.Y1": torch.randint(1, 100, size=()).item(),
                        "Roi.X2": torch.randint(1, 100, size=()).item(),
                        "Roi.Y2": torch.randint(1, 100, size=()).item(),
                        "ClassId": class_idx,
                    }
                )

    if config["split"] == "train":
        train_folder = root / "GTSRB" / "Training"
        train_folder.mkdir(parents=True)

        for class_idx in classes:
            create_image_folder(
                train_folder,
                name=class_idx,
                file_name_fn=lambda image_idx: f"{class_idx}_{image_idx:05d}.ppm",
                num_examples=num_examples_per_class,
            )
            _make_ann_file(
                path=train_folder / class_idx / f"GT-{class_idx}.csv",
                num_examples=num_examples_per_class,
                class_idx=int(class_idx),
            )
        make_zip(root, "GTSRB-Training_fixed.zip", train_folder)
    else:
        test_folder = root / "GTSRB" / "Final_Test"
        test_folder.mkdir(parents=True)

        create_image_folder(
            test_folder,
            name="Images",
            file_name_fn=lambda image_idx: f"{image_idx:05d}.ppm",
            num_examples=num_examples,
        )

        make_zip(root, "GTSRB_Final_Test_Images.zip", test_folder)

        _make_ann_file(
            path=root / "GT-final_test.csv",
            num_examples=num_examples,
            class_idx="random",
        )

        make_zip(root, "GTSRB_Final_Test_GT.zip", "GT-final_test.csv")

    return num_examples


1133
1134
@register_mock(configs=combinations_grid(split=("train", "val", "test")))
def clevr(root, config):
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
    data_folder = root / "CLEVR_v1.0"

    num_samples_map = {
        "train": 3,
        "val": 2,
        "test": 1,
    }

    images_folder = data_folder / "images"
    image_files = {
        split: create_image_folder(
            images_folder,
            split,
            file_name_fn=lambda idx: f"CLEVR_{split}_{idx:06d}.jpg",
            num_examples=num_samples,
        )
        for split, num_samples in num_samples_map.items()
    }

    scenes_folder = data_folder / "scenes"
    scenes_folder.mkdir()
    for split in ["train", "val"]:
        with open(scenes_folder / f"CLEVR_{split}_scenes.json", "w") as file:
            json.dump(
                {
                    "scenes": [
                        {
                            "image_filename": image_file.name,
                            # We currently only return the number of objects in a scene.
                            # Thus, it is sufficient for now to only mock the number of elements.
                            "objects": [None] * int(torch.randint(1, 5, ())),
                        }
                        for image_file in image_files[split]
                    ]
                },
                file,
            )

1173
    make_zip(root, f"{data_folder.name}.zip", data_folder)
1174

1175
    return num_samples_map[config["split"]]
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232


class OxfordIIITPetMockData:
    @classmethod
    def _meta_to_split_and_classification_ann(cls, meta, idx):
        image_id = "_".join(
            [
                *[(str.title if meta["species"] == "cat" else str.lower)(part) for part in meta["cls"].split()],
                str(idx),
            ]
        )
        class_id = str(meta["label"] + 1)
        species = "1" if meta["species"] == "cat" else "2"
        breed_id = "-1"
        return (image_id, class_id, species, breed_id)

    @classmethod
    def generate(self, root):
        classification_anns_meta = (
            dict(cls="Abyssinian", label=0, species="cat"),
            dict(cls="Keeshond", label=18, species="dog"),
            dict(cls="Yorkshire Terrier", label=36, species="dog"),
        )
        split_and_classification_anns = [
            self._meta_to_split_and_classification_ann(meta, idx)
            for meta, idx in itertools.product(classification_anns_meta, (1, 2, 10))
        ]
        image_ids, *_ = zip(*split_and_classification_anns)

        image_files = create_image_folder(
            root, "images", file_name_fn=lambda idx: f"{image_ids[idx]}.jpg", num_examples=len(image_ids)
        )

        anns_folder = root / "annotations"
        anns_folder.mkdir()
        random.shuffle(split_and_classification_anns)
        splits = ("trainval", "test")
        num_samples_map = {}
        for offset, split in enumerate(splits):
            split_and_classification_anns_in_split = split_and_classification_anns[offset :: len(splits)]
            with open(anns_folder / f"{split}.txt", "w") as file:
                writer = csv.writer(file, delimiter=" ")
                for split_and_classification_ann in split_and_classification_anns_in_split:
                    writer.writerow(split_and_classification_ann)

            num_samples_map[split] = len(split_and_classification_anns_in_split)

        segmentation_files = create_image_folder(
            anns_folder, "trimaps", file_name_fn=lambda idx: f"{image_ids[idx]}.png", num_examples=len(image_ids)
        )

        # The dataset has some rogue files
        for path in image_files[:3]:
            path.with_suffix(".mat").touch()
        for path in segmentation_files:
            path.with_name(f".{path.name}").touch()

1233
1234
        make_tar(root, "images.tar.gz", compression="gz")
        make_tar(root, anns_folder.with_suffix(".tar.gz").name, compression="gz")
1235
1236
1237
1238

        return num_samples_map


1239
1240
1241
@register_mock(name="oxford-iiit-pet", configs=combinations_grid(split=("trainval", "test")))
def oxford_iiit_pet(root, config):
    return OxfordIIITPetMockData.generate(root)[config["split"]]
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321


class _CUB200MockData:
    @classmethod
    def _category_folder(cls, category, idx):
        return f"{idx:03d}.{category}"

    @classmethod
    def _file_stem(cls, category, idx):
        return f"{category}_{idx:04d}"

    @classmethod
    def _make_images(cls, images_folder):
        image_files = []
        for category_idx, category in [
            (1, "Black_footed_Albatross"),
            (100, "Brown_Pelican"),
            (200, "Common_Yellowthroat"),
        ]:
            image_files.extend(
                create_image_folder(
                    images_folder,
                    cls._category_folder(category, category_idx),
                    lambda image_idx: f"{cls._file_stem(category, image_idx)}.jpg",
                    num_examples=5,
                )
            )

        return image_files


class CUB2002011MockData(_CUB200MockData):
    @classmethod
    def _make_archive(cls, root):
        archive_folder = root / "CUB_200_2011"

        images_folder = archive_folder / "images"
        image_files = cls._make_images(images_folder)
        image_ids = list(range(1, len(image_files) + 1))

        with open(archive_folder / "images.txt", "w") as file:
            file.write(
                "\n".join(
                    f"{id} {path.relative_to(images_folder).as_posix()}" for id, path in zip(image_ids, image_files)
                )
            )

        split_ids = torch.randint(2, (len(image_ids),)).tolist()
        counts = Counter(split_ids)
        num_samples_map = {"train": counts[1], "test": counts[0]}
        with open(archive_folder / "train_test_split.txt", "w") as file:
            file.write("\n".join(f"{image_id} {split_id}" for image_id, split_id in zip(image_ids, split_ids)))

        with open(archive_folder / "bounding_boxes.txt", "w") as file:
            file.write(
                "\n".join(
                    " ".join(
                        str(item)
                        for item in [image_id, *make_tensor((4,), dtype=torch.int, low=0).to(torch.float).tolist()]
                    )
                    for image_id in image_ids
                )
            )

        make_tar(root, archive_folder.with_suffix(".tgz").name, compression="gz")

        return image_files, num_samples_map

    @classmethod
    def _make_segmentations(cls, root, image_files):
        segmentations_folder = root / "segmentations"
        for image_file in image_files:
            folder = segmentations_folder.joinpath(image_file.relative_to(image_file.parents[1]))
            folder.mkdir(exist_ok=True, parents=True)
            create_image_file(
                folder,
                image_file.with_suffix(".png").name,
                size=[1, *make_tensor((2,), low=3, dtype=torch.int).tolist()],
            )

1322
        make_tar(root, segmentations_folder.with_suffix(".tgz").name, compression="gz")
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404

    @classmethod
    def generate(cls, root):
        image_files, num_samples_map = cls._make_archive(root)
        cls._make_segmentations(root, image_files)
        return num_samples_map


class CUB2002010MockData(_CUB200MockData):
    @classmethod
    def _make_hidden_rouge_file(cls, *files):
        for file in files:
            (file.parent / f"._{file.name}").touch()

    @classmethod
    def _make_splits(cls, root, image_files):
        split_folder = root / "lists"
        split_folder.mkdir()
        random.shuffle(image_files)
        splits = ("train", "test")
        num_samples_map = {}
        for offset, split in enumerate(splits):
            image_files_in_split = image_files[offset :: len(splits)]

            split_file = split_folder / f"{split}.txt"
            with open(split_file, "w") as file:
                file.write(
                    "\n".join(
                        sorted(
                            str(image_file.relative_to(image_file.parents[1]).as_posix())
                            for image_file in image_files_in_split
                        )
                    )
                )

            cls._make_hidden_rouge_file(split_file)
            num_samples_map[split] = len(image_files_in_split)

        make_tar(root, split_folder.with_suffix(".tgz").name, compression="gz")

        return num_samples_map

    @classmethod
    def _make_anns(cls, root, image_files):
        from scipy.io import savemat

        anns_folder = root / "annotations-mat"
        for image_file in image_files:
            ann_file = anns_folder / image_file.with_suffix(".mat").relative_to(image_file.parents[1])
            ann_file.parent.mkdir(parents=True, exist_ok=True)

            savemat(
                ann_file,
                {
                    "seg": torch.randint(
                        256, make_tensor((2,), low=3, dtype=torch.int).tolist(), dtype=torch.uint8
                    ).numpy(),
                    "bbox": dict(
                        zip(("left", "top", "right", "bottom"), make_tensor((4,), dtype=torch.uint8).tolist())
                    ),
                },
            )

        readme_file = anns_folder / "README.txt"
        readme_file.touch()
        cls._make_hidden_rouge_file(readme_file)

        make_tar(root, "annotations.tgz", anns_folder, compression="gz")

    @classmethod
    def generate(cls, root):
        images_folder = root / "images"
        image_files = cls._make_images(images_folder)
        cls._make_hidden_rouge_file(*image_files)
        make_tar(root, images_folder.with_suffix(".tgz").name, compression="gz")

        num_samples_map = cls._make_splits(root, image_files)
        cls._make_anns(root, image_files)

        return num_samples_map


1405
1406
1407
1408
@register_mock(configs=combinations_grid(split=("train", "test"), year=("2010", "2011")))
def cub200(root, config):
    num_samples_map = (CUB2002011MockData if config["year"] == "2011" else CUB2002010MockData).generate(root)
    return num_samples_map[config["split"]]
1409
1410


1411
1412
@register_mock(configs=[dict()])
def eurosat(root, config):
1413
    data_folder = root / "2750"
1414
1415
1416
    data_folder.mkdir(parents=True)

    num_examples_per_class = 3
1417
1418
    categories = ["AnnualCrop", "Forest"]
    for category in categories:
1419
1420
        create_image_folder(
            root=data_folder,
1421
1422
            name=category,
            file_name_fn=lambda idx: f"{category}_{idx + 1}.jpg",
1423
1424
1425
            num_examples=num_examples_per_class,
        )
    make_zip(root, "EuroSAT.zip", data_folder)
1426
    return len(categories) * num_examples_per_class
1427
1428


1429
1430
@register_mock(configs=combinations_grid(split=("train", "test", "extra")))
def svhn(root, config):
1431
1432
1433
1434
1435
1436
    import scipy.io as sio

    num_samples = {
        "train": 2,
        "test": 3,
        "extra": 4,
1437
    }[config["split"]]
1438
1439

    sio.savemat(
1440
        root / f"{config['split']}_32x32.mat",
1441
1442
1443
1444
1445
1446
        {
            "X": np.random.randint(256, size=(32, 32, 3, num_samples), dtype=np.uint8),
            "y": np.random.randint(10, size=(num_samples,), dtype=np.uint8),
        },
    )
    return num_samples
1447
1448


1449
1450
@register_mock(configs=combinations_grid(split=("train", "val", "test")))
def pcam(root, config):
1451
1452
    import h5py

1453
    num_images = {"train": 2, "test": 3, "val": 4}[config["split"]]
1454

1455
    split = "valid" if config["split"] == "val" else config["split"]
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473

    images_io = io.BytesIO()
    with h5py.File(images_io, "w") as f:
        f["x"] = np.random.randint(0, 256, size=(num_images, 10, 10, 3), dtype=np.uint8)

    targets_io = io.BytesIO()
    with h5py.File(targets_io, "w") as f:
        f["y"] = np.random.randint(0, 2, size=(num_images, 1, 1, 1), dtype=np.uint8)

    # Create .gz compressed files
    images_file = root / f"camelyonpatch_level_2_split_{split}_x.h5.gz"
    targets_file = root / f"camelyonpatch_level_2_split_{split}_y.h5.gz"
    for compressed_file_name, uncompressed_file_io in ((images_file, images_io), (targets_file, targets_io)):
        compressed_data = gzip.compress(uncompressed_file_io.getbuffer())
        with open(compressed_file_name, "wb") as compressed_file:
            compressed_file.write(compressed_data)

    return num_images
1474
1475


1476
1477
@register_mock(name="stanford-cars", configs=combinations_grid(split=("train", "test")))
def stanford_cars(root, config):
1478
1479
1480
    import scipy.io as io
    from numpy.core.records import fromarrays

1481
1482
    split = config["split"]
    num_samples = {"train": 5, "test": 7}[split]
1483
1484
1485
1486
1487
    num_categories = 3

    devkit = root / "devkit"
    devkit.mkdir(parents=True)

1488
    if split == "train":
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
        images_folder_name = "cars_train"
        annotations_mat_path = devkit / "cars_train_annos.mat"
    else:
        images_folder_name = "cars_test"
        annotations_mat_path = root / "cars_test_annos_withlabels.mat"

    create_image_folder(
        root=root,
        name=images_folder_name,
        file_name_fn=lambda image_index: f"{image_index:5d}.jpg",
        num_examples=num_samples,
    )

1502
    make_tar(root, f"cars_{split}.tgz", images_folder_name)
1503
1504
1505
1506
1507
1508
1509
1510
1511
    bbox = np.random.randint(1, 200, num_samples, dtype=np.uint8)
    classes = np.random.randint(1, num_categories + 1, num_samples, dtype=np.uint8)
    fnames = [f"{i:5d}.jpg" for i in range(num_samples)]
    rec_array = fromarrays(
        [bbox, bbox, bbox, bbox, classes, fnames],
        names=["bbox_x1", "bbox_y1", "bbox_x2", "bbox_y2", "class", "fname"],
    )

    io.savemat(annotations_mat_path, {"annotations": rec_array})
1512
    if split == "train":
1513
1514
1515
        make_tar(root, "car_devkit.tgz", devkit, compression="gz")

    return num_samples
Lezwon Castelino's avatar
Lezwon Castelino committed
1516
1517


1518
1519
1520
@register_mock(configs=combinations_grid(split=("train", "test")))
def usps(root, config):
    num_samples = {"train": 15, "test": 7}[config["split"]]
Lezwon Castelino's avatar
Lezwon Castelino committed
1521

1522
    with bz2.open(root / f"usps{'.t' if not config['split'] == 'train' else ''}.bz2", "wb") as fh:
Lezwon Castelino's avatar
Lezwon Castelino committed
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
        lines = []
        for _ in range(num_samples):
            label = make_tensor(1, low=1, high=11, dtype=torch.int)
            values = make_tensor(256, low=-1, high=1, dtype=torch.float)
            lines.append(
                " ".join([f"{int(label)}", *(f"{idx}:{float(value):.6f}" for idx, value in enumerate(values, 1))])
            )

        fh.write("\n".join(lines).encode())

    return num_samples