common_utils.py 15.1 KB
Newer Older
1
2
3
4
import os
import shutil
import tempfile
import contextlib
eellison's avatar
eellison committed
5
6
7
import unittest
import argparse
import sys
8
import io
eellison's avatar
eellison committed
9
10
11
import torch
import errno
import __main__
12

13
from numbers import Number
Philip Meier's avatar
Philip Meier committed
14
from torch._six import string_classes
15
16
from collections import OrderedDict

17
18
19
import numpy as np
from PIL import Image

20
21
22
23
24
25
26
27
28
29
30

@contextlib.contextmanager
def get_tmp_dir(src=None, **kwargs):
    tmp_dir = tempfile.mkdtemp(**kwargs)
    if src is not None:
        os.rmdir(tmp_dir)
        shutil.copytree(src, tmp_dir)
    try:
        yield tmp_dir
    finally:
        shutil.rmtree(tmp_dir)
eellison's avatar
eellison committed
31
32
33


ACCEPT = os.getenv('EXPECTTEST_ACCEPT')
34
35
36
TEST_WITH_SLOW = os.getenv('PYTORCH_TEST_WITH_SLOW', '0') == '1'
# TEST_WITH_SLOW = True  # TODO: Delete this line once there is a PYTORCH_TEST_WITH_SLOW aware CI job

eellison's avatar
eellison committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('--accept', action='store_true')
args, remaining = parser.parse_known_args()
if not ACCEPT:
    ACCEPT = args.accept
for i, arg in enumerate(sys.argv):
    if arg == '--accept':
        del sys.argv[i]
        break


class MapNestedTensorObjectImpl(object):
    def __init__(self, tensor_map_fn):
        self.tensor_map_fn = tensor_map_fn

    def __call__(self, object):
        if isinstance(object, torch.Tensor):
            return self.tensor_map_fn(object)

        elif isinstance(object, dict):
            mapped_dict = {}
            for key, value in object.items():
                mapped_dict[self(key)] = self(value)
            return mapped_dict

        elif isinstance(object, (list, tuple)):
            mapped_iter = []
            for iter in object:
                mapped_iter.append(self(iter))
            return mapped_iter if not isinstance(object, tuple) else tuple(mapped_iter)

        else:
            return object


def map_nested_tensor_object(object, tensor_map_fn):
    impl = MapNestedTensorObjectImpl(tensor_map_fn)
    return impl(object)


78
79
80
81
82
83
84
85
def is_iterable(obj):
    try:
        iter(obj)
        return True
    except TypeError:
        return False


eellison's avatar
eellison committed
86
87
88
# adapted from TestCase in torch/test/common_utils to accept non-string
# inputs and set maximum binary size
class TestCase(unittest.TestCase):
89
90
    precision = 1e-5

91
    def assertExpected(self, output, subname=None, prec=None, strip_suffix=None):
eellison's avatar
eellison committed
92
93
94
95
96
97
98
99
100
101
        r"""
        Test that a python value matches the recorded contents of a file
        derived from the name of this test and subname.  The value must be
        pickable with `torch.save`. This file
        is placed in the 'expect' directory in the same directory
        as the test script. You can automatically update the recorded test
        output using --accept.

        If you call this multiple times in a single function, you must
        give a unique subname each time.
102
103
104
105
106
107

        strip_suffix allows different tests that expect similar numerics, e.g.
        "test_xyz_cuda" and "test_xyz_cpu", to use the same pickled data.
        test_xyz_cuda would pass strip_suffix="_cuda", test_xyz_cpu would pass
        strip_suffix="_cpu", and they would both use a data file name based on
        "test_xyz".
eellison's avatar
eellison committed
108
        """
109
        def remove_prefix_suffix(text, prefix, suffix):
eellison's avatar
eellison committed
110
            if text.startswith(prefix):
111
112
113
                text = text[len(prefix):]
            if suffix is not None and text.endswith(suffix):
                text = text[:len(text) - len(suffix)]
eellison's avatar
eellison committed
114
115
116
117
118
            return text
        # NB: we take __file__ from the module that defined the test
        # class, so we place the expect directory where the test script
        # lives, NOT where test/common_utils.py lives.
        module_id = self.__class__.__module__
119
        munged_id = remove_prefix_suffix(self.id(), module_id + ".", strip_suffix)
eellison's avatar
eellison committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
        test_file = os.path.realpath(sys.modules[module_id].__file__)
        expected_file = os.path.join(os.path.dirname(test_file),
                                     "expect",
                                     munged_id)

        subname_output = ""
        if subname:
            expected_file += "_" + subname
            subname_output = " ({})".format(subname)
        expected_file += "_expect.pkl"

        def accept_output(update_type):
            print("Accepting {} for {}{}:\n\n{}".format(update_type, munged_id, subname_output, output))
            torch.save(output, expected_file)
            MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
            binary_size = os.path.getsize(expected_file)
            self.assertTrue(binary_size <= MAX_PICKLE_SIZE)

        try:
            expected = torch.load(expected_file)
        except IOError as e:
            if e.errno != errno.ENOENT:
                raise
            elif ACCEPT:
144
145
                accept_output("output")
                return
eellison's avatar
eellison committed
146
147
148
149
150
151
152
153
            else:
                raise RuntimeError(
                    ("I got this output for {}{}:\n\n{}\n\n"
                     "No expect file exists; to accept the current output, run:\n"
                     "python {} {} --accept").format(munged_id, subname_output, output, __main__.__file__, munged_id))

        if ACCEPT:
            try:
154
                self.assertEqual(output, expected, prec=prec)
eellison's avatar
eellison committed
155
            except Exception:
156
                accept_output("updated output")
eellison's avatar
eellison committed
157
        else:
158
            self.assertEqual(output, expected, prec=prec)
eellison's avatar
eellison committed
159

160
161
162
163
164
165
166
167
168
    def assertEqual(self, x, y, prec=None, message='', allow_inf=False):
        """
        This is copied from pytorch/test/common_utils.py's TestCase.assertEqual
        """
        if isinstance(prec, str) and message == '':
            message = prec
            prec = None
        if prec is None:
            prec = self.precision
eellison's avatar
eellison committed
169

170
171
172
173
174
175
176
177
178
179
180
181
182
183
        if isinstance(x, torch.Tensor) and isinstance(y, Number):
            self.assertEqual(x.item(), y, prec=prec, message=message,
                             allow_inf=allow_inf)
        elif isinstance(y, torch.Tensor) and isinstance(x, Number):
            self.assertEqual(x, y.item(), prec=prec, message=message,
                             allow_inf=allow_inf)
        elif isinstance(x, torch.Tensor) and isinstance(y, torch.Tensor):
            def assertTensorsEqual(a, b):
                super(TestCase, self).assertEqual(a.size(), b.size(), message)
                if a.numel() > 0:
                    if (a.device.type == 'cpu' and (a.dtype == torch.float16 or a.dtype == torch.bfloat16)):
                        # CPU half and bfloat16 tensors don't have the methods we need below
                        a = a.to(torch.float32)
                    b = b.to(a)
eellison's avatar
eellison committed
184

185
186
187
188
189
190
191
192
                    if (a.dtype == torch.bool) != (b.dtype == torch.bool):
                        raise TypeError("Was expecting both tensors to be bool type.")
                    else:
                        if a.dtype == torch.bool and b.dtype == torch.bool:
                            # we want to respect precision but as bool doesn't support substraction,
                            # boolean tensor has to be converted to int
                            a = a.to(torch.int)
                            b = b.to(torch.int)
eellison's avatar
eellison committed
193

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
                        diff = a - b
                        if a.is_floating_point():
                            # check that NaNs are in the same locations
                            nan_mask = torch.isnan(a)
                            self.assertTrue(torch.equal(nan_mask, torch.isnan(b)), message)
                            diff[nan_mask] = 0
                            # inf check if allow_inf=True
                            if allow_inf:
                                inf_mask = torch.isinf(a)
                                inf_sign = inf_mask.sign()
                                self.assertTrue(torch.equal(inf_sign, torch.isinf(b).sign()), message)
                                diff[inf_mask] = 0
                        # TODO: implement abs on CharTensor (int8)
                        if diff.is_signed() and diff.dtype != torch.int8:
                            diff = diff.abs()
                        max_err = diff.max()
                        tolerance = prec + prec * abs(a.max())
                        self.assertLessEqual(max_err, tolerance, message)
            super(TestCase, self).assertEqual(x.is_sparse, y.is_sparse, message)
            super(TestCase, self).assertEqual(x.is_quantized, y.is_quantized, message)
            if x.is_sparse:
                x = self.safeCoalesce(x)
                y = self.safeCoalesce(y)
                assertTensorsEqual(x._indices(), y._indices())
                assertTensorsEqual(x._values(), y._values())
            elif x.is_quantized and y.is_quantized:
                self.assertEqual(x.qscheme(), y.qscheme(), prec=prec,
                                 message=message, allow_inf=allow_inf)
                if x.qscheme() == torch.per_tensor_affine:
                    self.assertEqual(x.q_scale(), y.q_scale(), prec=prec,
                                     message=message, allow_inf=allow_inf)
                    self.assertEqual(x.q_zero_point(), y.q_zero_point(),
                                     prec=prec, message=message,
                                     allow_inf=allow_inf)
                elif x.qscheme() == torch.per_channel_affine:
                    self.assertEqual(x.q_per_channel_scales(), y.q_per_channel_scales(), prec=prec,
                                     message=message, allow_inf=allow_inf)
                    self.assertEqual(x.q_per_channel_zero_points(), y.q_per_channel_zero_points(),
                                     prec=prec, message=message,
                                     allow_inf=allow_inf)
                    self.assertEqual(x.q_per_channel_axis(), y.q_per_channel_axis(),
                                     prec=prec, message=message)
                self.assertEqual(x.dtype, y.dtype)
                self.assertEqual(x.int_repr().to(torch.int32),
                                 y.int_repr().to(torch.int32), prec=prec,
                                 message=message, allow_inf=allow_inf)
            else:
                assertTensorsEqual(x, y)
        elif isinstance(x, string_classes) and isinstance(y, string_classes):
            super(TestCase, self).assertEqual(x, y, message)
        elif type(x) == set and type(y) == set:
            super(TestCase, self).assertEqual(x, y, message)
        elif isinstance(x, dict) and isinstance(y, dict):
            if isinstance(x, OrderedDict) and isinstance(y, OrderedDict):
                self.assertEqual(x.items(), y.items(), prec=prec,
                                 message=message, allow_inf=allow_inf)
            else:
                self.assertEqual(set(x.keys()), set(y.keys()), prec=prec,
                                 message=message, allow_inf=allow_inf)
                key_list = list(x.keys())
                self.assertEqual([x[k] for k in key_list],
                                 [y[k] for k in key_list],
                                 prec=prec, message=message,
                                 allow_inf=allow_inf)
        elif is_iterable(x) and is_iterable(y):
            super(TestCase, self).assertEqual(len(x), len(y), message)
            for x_, y_ in zip(x, y):
                self.assertEqual(x_, y_, prec=prec, message=message,
                                 allow_inf=allow_inf)
        elif isinstance(x, bool) and isinstance(y, bool):
            super(TestCase, self).assertEqual(x, y, message)
        elif isinstance(x, Number) and isinstance(y, Number):
Philip Meier's avatar
Philip Meier committed
266
            inf = float("inf")
267
268
269
270
271
272
273
274
275
            if abs(x) == inf or abs(y) == inf:
                if allow_inf:
                    super(TestCase, self).assertEqual(x, y, message)
                else:
                    self.fail("Expected finite numeric values - x={}, y={}".format(x, y))
                return
            super(TestCase, self).assertLessEqual(abs(x - y), prec, message)
        else:
            super(TestCase, self).assertEqual(x, y, message)
eellison's avatar
eellison committed
276

277
278
279
280
281
282
283
284
    def checkModule(self, nn_module, args, unwrapper=None, skip=False):
        """
        Check that a nn.Module's results in TorchScript match eager and that it
        can be exported
        """
        if not TEST_WITH_SLOW or skip:
            # TorchScript is not enabled, skip these tests
            return
eellison's avatar
eellison committed
285

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
        sm = torch.jit.script(nn_module)

        with freeze_rng_state():
            eager_out = nn_module(*args)

        with freeze_rng_state():
            script_out = sm(*args)
            if unwrapper:
                script_out = unwrapper(script_out)

        self.assertEqual(eager_out, script_out)
        self.assertExportImportModule(sm, args)

        return sm

    def getExportImportCopy(self, m):
        """
        Save and load a TorchScript model
        """
        buffer = io.BytesIO()
        torch.jit.save(m, buffer)
        buffer.seek(0)
        imported = torch.jit.load(buffer)
        return imported

    def assertExportImportModule(self, m, args):
        """
        Check that the results of a model are the same after saving and loading
        """
        m_import = self.getExportImportCopy(m)
        with freeze_rng_state():
            results = m(*args)
        with freeze_rng_state():
            results_from_imported = m_import(*args)
        self.assertEqual(results, results_from_imported)


@contextlib.contextmanager
def freeze_rng_state():
    rng_state = torch.get_rng_state()
    if torch.cuda.is_available():
        cuda_rng_state = torch.cuda.get_rng_state()
    yield
    if torch.cuda.is_available():
        torch.cuda.set_rng_state(cuda_rng_state)
    torch.set_rng_state(rng_state)
332
333
334
335
336
337
338
339
340


class TransformsTester(unittest.TestCase):

    def _create_data(self, height=3, width=3, channels=3, device="cpu"):
        tensor = torch.randint(0, 255, (channels, height, width), dtype=torch.uint8, device=device)
        pil_img = Image.fromarray(tensor.permute(1, 2, 0).contiguous().cpu().numpy())
        return tensor, pil_img

341
342
343
344
345
346
347
348
349
    def _create_data_batch(self, height=3, width=3, channels=3, num_samples=4, device="cpu"):
        batch_tensor = torch.randint(
            0, 255,
            (num_samples, channels, height, width),
            dtype=torch.uint8,
            device=device
        )
        return batch_tensor

350
351
352
353
354
355
356
357
358
    def compareTensorToPIL(self, tensor, pil_image, msg=None):
        np_pil_image = np.array(pil_image)
        if np_pil_image.ndim == 2:
            np_pil_image = np_pil_image[:, :, None]
        pil_tensor = torch.as_tensor(np_pil_image.transpose((2, 0, 1)))
        if msg is None:
            msg = "tensor:\n{} \ndid not equal PIL tensor:\n{}".format(tensor, pil_tensor)
        self.assertTrue(tensor.cpu().equal(pil_tensor), msg)

359
360
361
362
363
364
    def approxEqualTensorToPIL(self, tensor, pil_image, tol=1e-5, msg=None, agg_method="mean"):
        np_pil_image = np.array(pil_image)
        if np_pil_image.ndim == 2:
            np_pil_image = np_pil_image[:, :, None]
        pil_tensor = torch.as_tensor(np_pil_image.transpose((2, 0, 1))).to(tensor)
        err = getattr(torch, agg_method)(tensor - pil_tensor).item()
365
366
367
368
        self.assertTrue(
            err < tol,
            msg="{}: err={}, tol={}: \n{}\nvs\n{}".format(msg, err, tol, tensor[0, :10, :10], pil_tensor[0, :10, :10])
        )
369
370
371
372
373
374
375
376
377
378
379
380
381


def cycle_over(objs):
    for idx, obj in enumerate(objs):
        yield obj, objs[:idx] + objs[idx + 1:]


def int_dtypes():
    return torch.testing.integral_types()


def float_dtypes():
    return torch.testing.floating_types()