vision_transformer.py 19.4 KB
Newer Older
1
2
3
import math
from collections import OrderedDict
from functools import partial
4
from typing import Any, Callable, List, NamedTuple, Optional
5
6
7
8

import torch
import torch.nn as nn

9
from ..ops.misc import Conv2dNormActivation
10
from ..transforms._presets import ImageClassification, InterpolationMode
11
from ..utils import _log_api_usage_once
12
13
14
15
from ._api import WeightsEnum, Weights
from ._meta import _IMAGENET_CATEGORIES
from ._utils import handle_legacy_interface, _ovewrite_named_param

16
17
18

__all__ = [
    "VisionTransformer",
19
20
21
22
    "ViT_B_16_Weights",
    "ViT_B_32_Weights",
    "ViT_L_16_Weights",
    "ViT_L_32_Weights",
23
24
25
26
27
28
29
    "vit_b_16",
    "vit_b_32",
    "vit_l_16",
    "vit_l_32",
]


30
31
32
33
34
35
36
37
class ConvStemConfig(NamedTuple):
    out_channels: int
    kernel_size: int
    stride: int
    norm_layer: Callable[..., nn.Module] = nn.BatchNorm2d
    activation_layer: Callable[..., nn.Module] = nn.ReLU


38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
class MLPBlock(nn.Sequential):
    """Transformer MLP block."""

    def __init__(self, in_dim: int, mlp_dim: int, dropout: float):
        super().__init__()
        self.linear_1 = nn.Linear(in_dim, mlp_dim)
        self.act = nn.GELU()
        self.dropout_1 = nn.Dropout(dropout)
        self.linear_2 = nn.Linear(mlp_dim, in_dim)
        self.dropout_2 = nn.Dropout(dropout)

        nn.init.xavier_uniform_(self.linear_1.weight)
        nn.init.xavier_uniform_(self.linear_2.weight)
        nn.init.normal_(self.linear_1.bias, std=1e-6)
        nn.init.normal_(self.linear_2.bias, std=1e-6)


class EncoderBlock(nn.Module):
    """Transformer encoder block."""

    def __init__(
        self,
        num_heads: int,
        hidden_dim: int,
        mlp_dim: int,
        dropout: float,
        attention_dropout: float,
        norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
    ):
        super().__init__()
        self.num_heads = num_heads

        # Attention block
        self.ln_1 = norm_layer(hidden_dim)
        self.self_attention = nn.MultiheadAttention(hidden_dim, num_heads, dropout=attention_dropout, batch_first=True)
        self.dropout = nn.Dropout(dropout)

        # MLP block
        self.ln_2 = norm_layer(hidden_dim)
        self.mlp = MLPBlock(hidden_dim, mlp_dim, dropout)

    def forward(self, input: torch.Tensor):
        torch._assert(input.dim() == 3, f"Expected (seq_length, batch_size, hidden_dim) got {input.shape}")
        x = self.ln_1(input)
        x, _ = self.self_attention(query=x, key=x, value=x, need_weights=False)
        x = self.dropout(x)
        x = x + input

        y = self.ln_2(x)
        y = self.mlp(y)
        return x + y


class Encoder(nn.Module):
    """Transformer Model Encoder for sequence to sequence translation."""

    def __init__(
        self,
        seq_length: int,
        num_layers: int,
        num_heads: int,
        hidden_dim: int,
        mlp_dim: int,
        dropout: float,
        attention_dropout: float,
        norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
    ):
        super().__init__()
        # Note that batch_size is on the first dim because
        # we have batch_first=True in nn.MultiAttention() by default
        self.pos_embedding = nn.Parameter(torch.empty(1, seq_length, hidden_dim).normal_(std=0.02))  # from BERT
        self.dropout = nn.Dropout(dropout)
        layers: OrderedDict[str, nn.Module] = OrderedDict()
        for i in range(num_layers):
            layers[f"encoder_layer_{i}"] = EncoderBlock(
                num_heads,
                hidden_dim,
                mlp_dim,
                dropout,
                attention_dropout,
                norm_layer,
            )
        self.layers = nn.Sequential(layers)
        self.ln = norm_layer(hidden_dim)

    def forward(self, input: torch.Tensor):
        torch._assert(input.dim() == 3, f"Expected (batch_size, seq_length, hidden_dim) got {input.shape}")
        input = input + self.pos_embedding
        return self.ln(self.layers(self.dropout(input)))


class VisionTransformer(nn.Module):
    """Vision Transformer as per https://arxiv.org/abs/2010.11929."""

    def __init__(
        self,
        image_size: int,
        patch_size: int,
        num_layers: int,
        num_heads: int,
        hidden_dim: int,
        mlp_dim: int,
        dropout: float = 0.0,
        attention_dropout: float = 0.0,
        num_classes: int = 1000,
        representation_size: Optional[int] = None,
        norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
145
        conv_stem_configs: Optional[List[ConvStemConfig]] = None,
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    ):
        super().__init__()
        _log_api_usage_once(self)
        torch._assert(image_size % patch_size == 0, "Input shape indivisible by patch size!")
        self.image_size = image_size
        self.patch_size = patch_size
        self.hidden_dim = hidden_dim
        self.mlp_dim = mlp_dim
        self.attention_dropout = attention_dropout
        self.dropout = dropout
        self.num_classes = num_classes
        self.representation_size = representation_size
        self.norm_layer = norm_layer

160
161
162
163
164
165
166
        if conv_stem_configs is not None:
            # As per https://arxiv.org/abs/2106.14881
            seq_proj = nn.Sequential()
            prev_channels = 3
            for i, conv_stem_layer_config in enumerate(conv_stem_configs):
                seq_proj.add_module(
                    f"conv_bn_relu_{i}",
167
                    Conv2dNormActivation(
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
                        in_channels=prev_channels,
                        out_channels=conv_stem_layer_config.out_channels,
                        kernel_size=conv_stem_layer_config.kernel_size,
                        stride=conv_stem_layer_config.stride,
                        norm_layer=conv_stem_layer_config.norm_layer,
                        activation_layer=conv_stem_layer_config.activation_layer,
                    ),
                )
                prev_channels = conv_stem_layer_config.out_channels
            seq_proj.add_module(
                "conv_last", nn.Conv2d(in_channels=prev_channels, out_channels=hidden_dim, kernel_size=1)
            )
            self.conv_proj: nn.Module = seq_proj
        else:
            self.conv_proj = nn.Conv2d(
                in_channels=3, out_channels=hidden_dim, kernel_size=patch_size, stride=patch_size
            )
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

        seq_length = (image_size // patch_size) ** 2

        # Add a class token
        self.class_token = nn.Parameter(torch.zeros(1, 1, hidden_dim))
        seq_length += 1

        self.encoder = Encoder(
            seq_length,
            num_layers,
            num_heads,
            hidden_dim,
            mlp_dim,
            dropout,
            attention_dropout,
            norm_layer,
        )
        self.seq_length = seq_length

        heads_layers: OrderedDict[str, nn.Module] = OrderedDict()
        if representation_size is None:
            heads_layers["head"] = nn.Linear(hidden_dim, num_classes)
        else:
            heads_layers["pre_logits"] = nn.Linear(hidden_dim, representation_size)
            heads_layers["act"] = nn.Tanh()
            heads_layers["head"] = nn.Linear(representation_size, num_classes)

        self.heads = nn.Sequential(heads_layers)

214
215
216
217
        if isinstance(self.conv_proj, nn.Conv2d):
            # Init the patchify stem
            fan_in = self.conv_proj.in_channels * self.conv_proj.kernel_size[0] * self.conv_proj.kernel_size[1]
            nn.init.trunc_normal_(self.conv_proj.weight, std=math.sqrt(1 / fan_in))
218
219
220
            if self.conv_proj.bias is not None:
                nn.init.zeros_(self.conv_proj.bias)
        elif self.conv_proj.conv_last is not None and isinstance(self.conv_proj.conv_last, nn.Conv2d):
221
222
223
224
            # Init the last 1x1 conv of the conv stem
            nn.init.normal_(
                self.conv_proj.conv_last.weight, mean=0.0, std=math.sqrt(2.0 / self.conv_proj.conv_last.out_channels)
            )
225
226
            if self.conv_proj.conv_last.bias is not None:
                nn.init.zeros_(self.conv_proj.conv_last.bias)
227

228
        if hasattr(self.heads, "pre_logits") and isinstance(self.heads.pre_logits, nn.Linear):
229
230
231
232
            fan_in = self.heads.pre_logits.in_features
            nn.init.trunc_normal_(self.heads.pre_logits.weight, std=math.sqrt(1 / fan_in))
            nn.init.zeros_(self.heads.pre_logits.bias)

233
234
235
        if isinstance(self.heads.head, nn.Linear):
            nn.init.zeros_(self.heads.head.weight)
            nn.init.zeros_(self.heads.head.bias)
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

    def _process_input(self, x: torch.Tensor) -> torch.Tensor:
        n, c, h, w = x.shape
        p = self.patch_size
        torch._assert(h == self.image_size, "Wrong image height!")
        torch._assert(w == self.image_size, "Wrong image width!")
        n_h = h // p
        n_w = w // p

        # (n, c, h, w) -> (n, hidden_dim, n_h, n_w)
        x = self.conv_proj(x)
        # (n, hidden_dim, n_h, n_w) -> (n, hidden_dim, (n_h * n_w))
        x = x.reshape(n, self.hidden_dim, n_h * n_w)

        # (n, hidden_dim, (n_h * n_w)) -> (n, (n_h * n_w), hidden_dim)
        # The self attention layer expects inputs in the format (N, S, E)
        # where S is the source sequence length, N is the batch size, E is the
        # embedding dimension
        x = x.permute(0, 2, 1)

        return x

    def forward(self, x: torch.Tensor):
        # Reshape and permute the input tensor
        x = self._process_input(x)
        n = x.shape[0]

        # Expand the class token to the full batch
        batch_class_token = self.class_token.expand(n, -1, -1)
        x = torch.cat([batch_class_token, x], dim=1)

        x = self.encoder(x)

        # Classifier "token" as used by standard language architectures
        x = x[:, 0]

        x = self.heads(x)

        return x


def _vision_transformer(
    patch_size: int,
    num_layers: int,
    num_heads: int,
    hidden_dim: int,
    mlp_dim: int,
283
    weights: Optional[WeightsEnum],
284
285
286
287
288
    progress: bool,
    **kwargs: Any,
) -> VisionTransformer:
    image_size = kwargs.pop("image_size", 224)

289
290
291
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))

292
293
294
295
296
297
298
299
300
301
    model = VisionTransformer(
        image_size=image_size,
        patch_size=patch_size,
        num_layers=num_layers,
        num_heads=num_heads,
        hidden_dim=hidden_dim,
        mlp_dim=mlp_dim,
        **kwargs,
    )

302
303
    if weights:
        model.load_state_dict(weights.get_state_dict(progress=progress))
304
305
306
307

    return model


308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
_COMMON_META = {
    "task": "image_classification",
    "architecture": "ViT",
    "publication_year": 2020,
    "categories": _IMAGENET_CATEGORIES,
    "interpolation": InterpolationMode.BILINEAR,
}


class ViT_B_16_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/vit_b_16-c867db91.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 86567656,
            "size": (224, 224),
            "min_size": (224, 224),
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#vit_b_16",
            "acc@1": 81.072,
            "acc@5": 95.318,
        },
    )
    DEFAULT = IMAGENET1K_V1


class ViT_B_32_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/vit_b_32-d86f8d99.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 88224232,
            "size": (224, 224),
            "min_size": (224, 224),
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#vit_b_32",
            "acc@1": 75.912,
            "acc@5": 92.466,
        },
    )
    DEFAULT = IMAGENET1K_V1


class ViT_L_16_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/vit_l_16-852ce7e3.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=242),
        meta={
            **_COMMON_META,
            "num_params": 304326632,
            "size": (224, 224),
            "min_size": (224, 224),
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#vit_l_16",
            "acc@1": 79.662,
            "acc@5": 94.638,
        },
    )
    DEFAULT = IMAGENET1K_V1


class ViT_L_32_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/vit_l_32-c7638314.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 306535400,
            "size": (224, 224),
            "min_size": (224, 224),
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#vit_l_32",
            "acc@1": 76.972,
            "acc@5": 93.07,
        },
    )
    DEFAULT = IMAGENET1K_V1


@handle_legacy_interface(weights=("pretrained", ViT_B_16_Weights.IMAGENET1K_V1))
def vit_b_16(*, weights: Optional[ViT_B_16_Weights] = None, progress: bool = True, **kwargs: Any) -> VisionTransformer:
387
388
389
390
391
    """
    Constructs a vit_b_16 architecture from
    `"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" <https://arxiv.org/abs/2010.11929>`_.

    Args:
392
        weights (ViT_B_16_Weights, optional): The pretrained weights for the model
393
394
        progress (bool): If True, displays a progress bar of the download to stderr
    """
395
396
    weights = ViT_B_16_Weights.verify(weights)

397
398
399
400
401
402
    return _vision_transformer(
        patch_size=16,
        num_layers=12,
        num_heads=12,
        hidden_dim=768,
        mlp_dim=3072,
403
        weights=weights,
404
405
406
407
408
        progress=progress,
        **kwargs,
    )


409
410
@handle_legacy_interface(weights=("pretrained", ViT_B_32_Weights.IMAGENET1K_V1))
def vit_b_32(*, weights: Optional[ViT_B_32_Weights] = None, progress: bool = True, **kwargs: Any) -> VisionTransformer:
411
412
413
414
415
    """
    Constructs a vit_b_32 architecture from
    `"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" <https://arxiv.org/abs/2010.11929>`_.

    Args:
416
        weights (ViT_B_32_Weights, optional): The pretrained weights for the model
417
418
        progress (bool): If True, displays a progress bar of the download to stderr
    """
419
420
    weights = ViT_B_32_Weights.verify(weights)

421
422
423
424
425
426
    return _vision_transformer(
        patch_size=32,
        num_layers=12,
        num_heads=12,
        hidden_dim=768,
        mlp_dim=3072,
427
        weights=weights,
428
429
430
431
432
        progress=progress,
        **kwargs,
    )


433
434
@handle_legacy_interface(weights=("pretrained", ViT_L_16_Weights.IMAGENET1K_V1))
def vit_l_16(*, weights: Optional[ViT_L_16_Weights] = None, progress: bool = True, **kwargs: Any) -> VisionTransformer:
435
436
437
438
439
    """
    Constructs a vit_l_16 architecture from
    `"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" <https://arxiv.org/abs/2010.11929>`_.

    Args:
440
        weights (ViT_L_16_Weights, optional): The pretrained weights for the model
441
442
        progress (bool): If True, displays a progress bar of the download to stderr
    """
443
444
    weights = ViT_L_16_Weights.verify(weights)

445
446
447
448
449
450
    return _vision_transformer(
        patch_size=16,
        num_layers=24,
        num_heads=16,
        hidden_dim=1024,
        mlp_dim=4096,
451
        weights=weights,
452
453
454
455
456
        progress=progress,
        **kwargs,
    )


457
458
@handle_legacy_interface(weights=("pretrained", ViT_L_32_Weights.IMAGENET1K_V1))
def vit_l_32(*, weights: Optional[ViT_L_32_Weights] = None, progress: bool = True, **kwargs: Any) -> VisionTransformer:
459
460
461
462
463
    """
    Constructs a vit_l_32 architecture from
    `"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" <https://arxiv.org/abs/2010.11929>`_.

    Args:
464
        weights (ViT_L_32_Weights, optional): The pretrained weights for the model
465
466
        progress (bool): If True, displays a progress bar of the download to stderr
    """
467
468
    weights = ViT_L_32_Weights.verify(weights)

469
470
471
472
473
474
    return _vision_transformer(
        patch_size=32,
        num_layers=24,
        num_heads=16,
        hidden_dim=1024,
        mlp_dim=4096,
475
        weights=weights,
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
        progress=progress,
        **kwargs,
    )


def interpolate_embeddings(
    image_size: int,
    patch_size: int,
    model_state: "OrderedDict[str, torch.Tensor]",
    interpolation_mode: str = "bicubic",
    reset_heads: bool = False,
) -> "OrderedDict[str, torch.Tensor]":
    """This function helps interpolating positional embeddings during checkpoint loading,
    especially when you want to apply a pre-trained model on images with different resolution.

    Args:
        image_size (int): Image size of the new model.
        patch_size (int): Patch size of the new model.
        model_state (OrderedDict[str, torch.Tensor]): State dict of the pre-trained model.
        interpolation_mode (str): The algorithm used for upsampling. Default: bicubic.
        reset_heads (bool): If true, not copying the state of heads. Default: False.

    Returns:
        OrderedDict[str, torch.Tensor]: A state dict which can be loaded into the new model.
    """
    # Shape of pos_embedding is (1, seq_length, hidden_dim)
    pos_embedding = model_state["encoder.pos_embedding"]
    n, seq_length, hidden_dim = pos_embedding.shape
    if n != 1:
        raise ValueError(f"Unexpected position embedding shape: {pos_embedding.shape}")

    new_seq_length = (image_size // patch_size) ** 2 + 1

    # Need to interpolate the weights for the position embedding.
    # We do this by reshaping the positions embeddings to a 2d grid, performing
    # an interpolation in the (h, w) space and then reshaping back to a 1d grid.
    if new_seq_length != seq_length:
        # The class token embedding shouldn't be interpolated so we split it up.
        seq_length -= 1
        new_seq_length -= 1
        pos_embedding_token = pos_embedding[:, :1, :]
        pos_embedding_img = pos_embedding[:, 1:, :]

        # (1, seq_length, hidden_dim) -> (1, hidden_dim, seq_length)
        pos_embedding_img = pos_embedding_img.permute(0, 2, 1)
        seq_length_1d = int(math.sqrt(seq_length))
522
523
524
525
        if seq_length_1d * seq_length_1d != seq_length:
            raise ValueError(
                f"seq_length is not a perfect square! Instead got seq_length_1d * seq_length_1d = {seq_length_1d * seq_length_1d } and seq_length = {seq_length}"
            )
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556

        # (1, hidden_dim, seq_length) -> (1, hidden_dim, seq_l_1d, seq_l_1d)
        pos_embedding_img = pos_embedding_img.reshape(1, hidden_dim, seq_length_1d, seq_length_1d)
        new_seq_length_1d = image_size // patch_size

        # Perform interpolation.
        # (1, hidden_dim, seq_l_1d, seq_l_1d) -> (1, hidden_dim, new_seq_l_1d, new_seq_l_1d)
        new_pos_embedding_img = nn.functional.interpolate(
            pos_embedding_img,
            size=new_seq_length_1d,
            mode=interpolation_mode,
            align_corners=True,
        )

        # (1, hidden_dim, new_seq_l_1d, new_seq_l_1d) -> (1, hidden_dim, new_seq_length)
        new_pos_embedding_img = new_pos_embedding_img.reshape(1, hidden_dim, new_seq_length)

        # (1, hidden_dim, new_seq_length) -> (1, new_seq_length, hidden_dim)
        new_pos_embedding_img = new_pos_embedding_img.permute(0, 2, 1)
        new_pos_embedding = torch.cat([pos_embedding_token, new_pos_embedding_img], dim=1)

        model_state["encoder.pos_embedding"] = new_pos_embedding

        if reset_heads:
            model_state_copy: "OrderedDict[str, torch.Tensor]" = OrderedDict()
            for k, v in model_state.items():
                if not k.startswith("heads"):
                    model_state_copy[k] = v
            model_state = model_state_copy

    return model_state