shufflenetv2.py 7.48 KB
Newer Older
1
2
from functools import partial
from typing import Any, List, Optional, Union
3

4
5
import torch
import torch.nn as nn
6
from torch import Tensor
7
from torchvision.models import shufflenetv2
8

9
10
11
12
13
from ...transforms._presets import ImageClassification, InterpolationMode
from .._api import WeightsEnum, Weights
from .._meta import _IMAGENET_CATEGORIES
from .._utils import handle_legacy_interface, _ovewrite_named_param
from ..shufflenetv2 import ShuffleNet_V2_X0_5_Weights, ShuffleNet_V2_X1_0_Weights
14
from .utils import _fuse_modules, _replace_relu, quantize_model
15

16

17
__all__ = [
18
    "QuantizableShuffleNetV2",
19
20
    "ShuffleNet_V2_X0_5_QuantizedWeights",
    "ShuffleNet_V2_X1_0_QuantizedWeights",
21
22
    "shufflenet_v2_x0_5",
    "shufflenet_v2_x1_0",
23
24
25
26
]


class QuantizableInvertedResidual(shufflenetv2.InvertedResidual):
27
    def __init__(self, *args: Any, **kwargs: Any) -> None:
28
        super().__init__(*args, **kwargs)
29
30
        self.cat = nn.quantized.FloatFunctional()

31
    def forward(self, x: Tensor) -> Tensor:
32
33
        if self.stride == 1:
            x1, x2 = x.chunk(2, dim=1)
34
            out = self.cat.cat([x1, self.branch2(x2)], dim=1)
35
        else:
36
            out = self.cat.cat([self.branch1(x), self.branch2(x)], dim=1)
37
38
39
40
41
42
43

        out = shufflenetv2.channel_shuffle(out, 2)

        return out


class QuantizableShuffleNetV2(shufflenetv2.ShuffleNetV2):
44
45
    # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
    def __init__(self, *args: Any, **kwargs: Any) -> None:
46
        super().__init__(*args, inverted_residual=QuantizableInvertedResidual, **kwargs)  # type: ignore[misc]
47
48
        self.quant = torch.ao.quantization.QuantStub()
        self.dequant = torch.ao.quantization.DeQuantStub()
49

50
    def forward(self, x: Tensor) -> Tensor:
51
        x = self.quant(x)
52
        x = self._forward_impl(x)
53
54
55
        x = self.dequant(x)
        return x

56
    def fuse_model(self, is_qat: Optional[bool] = None) -> None:
57
58
59
60
61
62
63
        r"""Fuse conv/bn/relu modules in shufflenetv2 model

        Fuse conv+bn+relu/ conv+relu/conv+bn modules to prepare for quantization.
        Model is modified in place.  Note that this operation does not change numerics
        and the model after modification is in floating point
        """
        for name, m in self._modules.items():
64
65
            if name in ["conv1", "conv5"] and m is not None:
                _fuse_modules(m, [["0", "1", "2"]], is_qat, inplace=True)
66
        for m in self.modules():
67
            if type(m) is QuantizableInvertedResidual:
68
                if len(m.branch1._modules.items()) > 0:
69
70
                    _fuse_modules(m.branch1, [["0", "1"], ["2", "3", "4"]], is_qat, inplace=True)
                _fuse_modules(
71
72
                    m.branch2,
                    [["0", "1", "2"], ["3", "4"], ["5", "6", "7"]],
73
                    is_qat,
74
75
76
77
                    inplace=True,
                )


78
def _shufflenetv2(
79
80
81
82
    stages_repeats: List[int],
    stages_out_channels: List[int],
    *,
    weights: Optional[WeightsEnum],
83
84
85
86
    progress: bool,
    quantize: bool,
    **kwargs: Any,
) -> QuantizableShuffleNetV2:
87
88
89
90
91
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
        if "backend" in weights.meta:
            _ovewrite_named_param(kwargs, "backend", weights.meta["backend"])
    backend = kwargs.pop("backend", "fbgemm")
92

93
    model = QuantizableShuffleNetV2(stages_repeats, stages_out_channels, **kwargs)
94
95
96
97
    _replace_relu(model)
    if quantize:
        quantize_model(model, backend)

98
99
    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))
100
101
102
103

    return model


104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
_COMMON_META = {
    "task": "image_classification",
    "architecture": "ShuffleNetV2",
    "publication_year": 2018,
    "size": (224, 224),
    "min_size": (1, 1),
    "categories": _IMAGENET_CATEGORIES,
    "interpolation": InterpolationMode.BILINEAR,
    "backend": "fbgemm",
    "quantization": "Post Training Quantization",
    "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models",
}


class ShuffleNet_V2_X0_5_QuantizedWeights(WeightsEnum):
    IMAGENET1K_FBGEMM_V1 = Weights(
        url="https://download.pytorch.org/models/quantized/shufflenetv2_x0.5_fbgemm-00845098.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 1366792,
            "unquantized": ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1,
            "acc@1": 57.972,
            "acc@5": 79.780,
        },
    )
    DEFAULT = IMAGENET1K_FBGEMM_V1


class ShuffleNet_V2_X1_0_QuantizedWeights(WeightsEnum):
    IMAGENET1K_FBGEMM_V1 = Weights(
        url="https://download.pytorch.org/models/quantized/shufflenetv2_x1_fbgemm-db332c57.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 2278604,
            "unquantized": ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1,
            "acc@1": 68.360,
            "acc@5": 87.582,
        },
    )
    DEFAULT = IMAGENET1K_FBGEMM_V1


@handle_legacy_interface(
    weights=(
        "pretrained",
        lambda kwargs: ShuffleNet_V2_X0_5_QuantizedWeights.IMAGENET1K_FBGEMM_V1
        if kwargs.get("quantize", False)
        else ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1,
    )
)
156
def shufflenet_v2_x0_5(
157
158
    *,
    weights: Optional[Union[ShuffleNet_V2_X0_5_QuantizedWeights, ShuffleNet_V2_X0_5_Weights]] = None,
159
160
161
162
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableShuffleNetV2:
163
164
165
166
167
168
    """
    Constructs a ShuffleNetV2 with 0.5x output channels, as described in
    `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design"
    <https://arxiv.org/abs/1807.11164>`_.

    Args:
169
170
        weights (ShuffleNet_V2_X0_5_QuantizedWeights or ShuffleNet_V2_X0_5_Weights, optional): The pretrained
            weights for the model
171
        progress (bool): If True, displays a progress bar of the download to stderr
172
        quantize (bool): If True, return a quantized version of the model
173
    """
174
    weights = (ShuffleNet_V2_X0_5_QuantizedWeights if quantize else ShuffleNet_V2_X0_5_Weights).verify(weights)
175
    return _shufflenetv2(
176
        [4, 8, 4], [24, 48, 96, 192, 1024], weights=weights, progress=progress, quantize=quantize, **kwargs
177
    )
178
179


180
181
182
183
184
185
186
187
@handle_legacy_interface(
    weights=(
        "pretrained",
        lambda kwargs: ShuffleNet_V2_X1_0_QuantizedWeights.IMAGENET1K_FBGEMM_V1
        if kwargs.get("quantize", False)
        else ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1,
    )
)
188
def shufflenet_v2_x1_0(
189
190
    *,
    weights: Optional[Union[ShuffleNet_V2_X1_0_QuantizedWeights, ShuffleNet_V2_X1_0_Weights]] = None,
191
192
193
194
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableShuffleNetV2:
195
196
197
198
199
200
    """
    Constructs a ShuffleNetV2 with 1.0x output channels, as described in
    `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design"
    <https://arxiv.org/abs/1807.11164>`_.

    Args:
201
202
        weights (ShuffleNet_V2_X1_0_QuantizedWeights or ShuffleNet_V2_X1_0_Weights, optional): The pretrained
            weights for the model
203
        progress (bool): If True, displays a progress bar of the download to stderr
204
        quantize (bool): If True, return a quantized version of the model
205
    """
206
    weights = (ShuffleNet_V2_X1_0_QuantizedWeights if quantize else ShuffleNet_V2_X1_0_Weights).verify(weights)
207
    return _shufflenetv2(
208
        [4, 8, 4], [24, 116, 232, 464, 1024], weights=weights, progress=progress, quantize=quantize, **kwargs
209
    )