ps_roi_align.cpp 6.25 KB
Newer Older
1
2
#include "ps_roi_align.h"
#include <torch/extension.h>
3

4
5
#if defined(WITH_CUDA) || defined(WITH_HIP)
#include <ATen/autocast_mode.h>
6
#endif
7

8
9
namespace vision {
namespace ops {
10
11

std::tuple<at::Tensor, at::Tensor> ps_roi_align(
12
13
    const at::Tensor& input,
    const at::Tensor& rois,
14
15
16
17
18
19
20
21
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t sampling_ratio) {
  static auto op = c10::Dispatcher::singleton()
                       .findSchemaOrThrow("torchvision::ps_roi_align", "")
                       .typed<decltype(ps_roi_align)>();
  return op.call(
22
23
24
      input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio);
}

25
#if defined(WITH_CUDA) || defined(WITH_HIP)
26
std::tuple<at::Tensor, at::Tensor> ps_roi_align_autocast(
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    const at::Tensor& input,
    const at::Tensor& rois,
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t sampling_ratio) {
  c10::impl::ExcludeDispatchKeyGuard no_autocast(c10::DispatchKey::Autocast);
  auto result = ps_roi_align(
      at::autocast::cached_cast(at::kFloat, input),
      at::autocast::cached_cast(at::kFloat, rois),
      spatial_scale,
      pooled_height,
      pooled_width,
      sampling_ratio);

  return std::make_tuple(
      std::get<0>(result).to(input.scalar_type()),
      std::get<1>(result).to(input.scalar_type()));
}
46
#endif
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

at::Tensor _ps_roi_align_backward(
    const at::Tensor& grad,
    const at::Tensor& rois,
    const at::Tensor& channel_mapping,
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t sampling_ratio,
    int64_t batch_size,
    int64_t channels,
    int64_t height,
    int64_t width) {
  static auto op =
      c10::Dispatcher::singleton()
          .findSchemaOrThrow("torchvision::_ps_roi_align_backward", "")
          .typed<decltype(_ps_roi_align_backward)>();
  return op.call(
65
66
      grad,
      rois,
67
      channel_mapping,
68
69
70
71
72
73
74
75
76
77
      spatial_scale,
      pooled_height,
      pooled_width,
      sampling_ratio,
      batch_size,
      channels,
      height,
      width);
}

78
79
namespace {

80
81
82
class PSROIAlignFunction
    : public torch::autograd::Function<PSROIAlignFunction> {
 public:
83
84
  static torch::autograd::variable_list forward(
      torch::autograd::AutogradContext* ctx,
85
86
87
88
89
90
      const torch::autograd::Variable& input,
      const torch::autograd::Variable& rois,
      double spatial_scale,
      int64_t pooled_height,
      int64_t pooled_width,
      int64_t sampling_ratio) {
91
92
93
94
95
    ctx->saved_data["spatial_scale"] = spatial_scale;
    ctx->saved_data["pooled_height"] = pooled_height;
    ctx->saved_data["pooled_width"] = pooled_width;
    ctx->saved_data["sampling_ratio"] = sampling_ratio;
    ctx->saved_data["input_shape"] = input.sizes();
96
97
    at::AutoNonVariableTypeMode g;
    auto result = ps_roi_align(
98
99
100
101
102
103
        input,
        rois,
        spatial_scale,
        pooled_height,
        pooled_width,
        sampling_ratio);
104

105
106
107
108
    auto output = std::get<0>(result);
    auto channel_mapping = std::get<1>(result);
    ctx->save_for_backward({rois, channel_mapping});
    ctx->mark_non_differentiable({channel_mapping});
109

110
111
112
    return {output, channel_mapping};
  }

113
114
  static torch::autograd::variable_list backward(
      torch::autograd::AutogradContext* ctx,
115
      const torch::autograd::variable_list& grad_output) {
116
117
118
119
120
    // Use data saved in forward
    auto saved = ctx->get_saved_variables();
    auto rois = saved[0];
    auto channel_mapping = saved[1];
    auto input_shape = ctx->saved_data["input_shape"].toIntList();
121
    auto grad_in = _ps_roi_align_backward(
122
123
124
125
126
127
128
129
130
131
132
        grad_output[0],
        rois,
        channel_mapping,
        ctx->saved_data["spatial_scale"].toDouble(),
        ctx->saved_data["pooled_height"].toInt(),
        ctx->saved_data["pooled_width"].toInt(),
        ctx->saved_data["sampling_ratio"].toInt(),
        input_shape[0],
        input_shape[1],
        input_shape[2],
        input_shape[3]);
133

134
135
136
137
138
139
    return {grad_in,
            torch::autograd::Variable(),
            torch::autograd::Variable(),
            torch::autograd::Variable(),
            torch::autograd::Variable(),
            torch::autograd::Variable()};
140
141
142
  }
};

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
// TODO: There should be an easier way to do this
class PSROIAlignBackwardFunction
    : public torch::autograd::Function<PSROIAlignBackwardFunction> {
 public:
  static torch::autograd::variable_list forward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::Variable& grad,
      const torch::autograd::Variable& rois,
      const torch::autograd::Variable& channel_mapping,
      double spatial_scale,
      int64_t pooled_height,
      int64_t pooled_width,
      int64_t sampling_ratio,
      int64_t batch_size,
      int64_t channels,
      int64_t height,
      int64_t width) {
    at::AutoNonVariableTypeMode g;
    auto grad_in = _ps_roi_align_backward(
        grad,
        rois,
        channel_mapping,
        spatial_scale,
        pooled_height,
        pooled_width,
        sampling_ratio,
        batch_size,
        channels,
        height,
        width);

    return {grad_in};
  }

  static torch::autograd::variable_list backward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::variable_list& grad_output) {
    TORCH_CHECK(0, "double backwards on ps_roi_align not supported");
  }
};

184
185
186
} // namespace

std::tuple<at::Tensor, at::Tensor> ps_roi_align_autograd(
187
188
    const at::Tensor& input,
    const at::Tensor& rois,
189
190
191
192
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t sampling_ratio) {
193
194
  auto result = PSROIAlignFunction::apply(
      input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio);
195
196

  return std::make_tuple(result[0], result[1]);
197
}
198

199
at::Tensor ps_roi_align_backward_autograd(
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    const at::Tensor& grad,
    const at::Tensor& rois,
    const at::Tensor& channel_mapping,
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t sampling_ratio,
    int64_t batch_size,
    int64_t channels,
    int64_t height,
    int64_t width) {
  return PSROIAlignBackwardFunction::apply(
      grad,
      rois,
      channel_mapping,
      spatial_scale,
      pooled_height,
      pooled_width,
      sampling_ratio,
      batch_size,
      channels,
      height,
      width)[0];
223
}
224
225
226

} // namespace ops
} // namespace vision