ps_roi_align_kernel.cu 13 KB
Newer Older
1
2
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
3
#include <THC/THCAtomics.cuh>
4
5

#include "cuda_helpers.h"
6
7
8
9
10
11
#include "ps_roi_align_kernel.h"

namespace vision {
namespace ops {

namespace {
12
13
14
15

template <typename T>
__device__ T bilinear_interpolate(
    const T* input,
16
17
    int height,
    int width,
18
19
    T y,
    T x,
20
    int index /* index for debug only*/) {
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
  // deal with cases that inverse elements are out of feature map boundary
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    // empty
    return 0;
  }

  if (y <= 0)
    y = 0;
  if (x <= 0)
    x = 0;

  int y_low = (int)y;
  int x_low = (int)x;
  int y_high;
  int x_high;

  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = (T)y_low;
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = (T)x_low;
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low;
  T lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;

  // do bilinear interpolation
  T v1 = input[y_low * width + x_low];
  T v2 = input[y_low * width + x_high];
  T v3 = input[y_high * width + x_low];
  T v4 = input[y_high * width + x_high];
  T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

  T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);

  return val;
}

template <typename T>
68
__global__ void ps_roi_align_forward_kernel_impl(
69
    int nthreads,
70
71
    const T* input,
    const T spatial_scale,
72
73
74
75
76
77
    int channels,
    int height,
    int width,
    int pooled_height,
    int pooled_width,
    int sampling_ratio,
78
    const T* rois,
79
    int channels_out,
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    T* output,
    int* channel_mapping) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c_out, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c_out = (index / pooled_width / pooled_height) % channels_out;
    int n = index / pooled_width / pooled_height / channels_out;

    // (n, c_in, ph, pw) is the associated element in the input
    int c_in = (c_out * pooled_height + ph) * pooled_width + pw;

    // [start, end) interval for spatial sampling
    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];

    // Do not using rounding; this implementation detail is critical
    T roi_start_w = offset_rois[1] * spatial_scale - static_cast<T>(0.5);
    T roi_start_h = offset_rois[2] * spatial_scale - static_cast<T>(0.5);
    T roi_end_w = offset_rois[3] * spatial_scale - static_cast<T>(0.5);
    T roi_end_h = offset_rois[4] * spatial_scale - static_cast<T>(0.5);

    T roi_width = roi_end_w - roi_start_w;
    T roi_height = roi_end_h - roi_start_h;
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    // Do not using floor/ceil; this implementation detail is critical
    T hstart = static_cast<T>(ph) * bin_size_h + roi_start_h;
    T wstart = static_cast<T>(pw) * bin_size_w + roi_start_w;

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : ceil(roi_height / pooled_height);
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
    const T count = roi_bin_grid_h * roi_bin_grid_w;

    const T* offset_input =
        input + (roi_batch_ind * channels + c_in) * height * width;
    T out_sum = 0;
    for (int iy = 0; iy < roi_bin_grid_h; iy++) {
      const T y = hstart +
          static_cast<T>(iy + .5f) * bin_size_h /
              static_cast<T>(roi_bin_grid_h);
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = wstart +
            static_cast<T>(ix + .5f) * bin_size_w /
                static_cast<T>(roi_bin_grid_w);
        T val = bilinear_interpolate(offset_input, height, width, y, x, index);
        out_sum += val;
      }
    }

    out_sum /= count;
    output[index] = out_sum;
    channel_mapping[index] = c_in;
  }
}

template <typename T>
__device__ void bilinear_interpolate_gradient(
143
144
    int height,
    int width,
145
146
147
148
149
150
151
152
153
154
    T y,
    T x,
    T& w1,
    T& w2,
    T& w3,
    T& w4,
    int& x_low,
    int& x_high,
    int& y_low,
    int& y_high,
155
    int index /* index for debug only*/) {
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
  // deal with cases that inverse elements are out of feature map boundary
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    // empty
    w1 = w2 = w3 = w4 = 0.;
    x_low = x_high = y_low = y_high = -1;
    return;
  }

  if (y <= 0)
    y = 0;
  if (x <= 0)
    x = 0;

  y_low = (int)y;
  x_low = (int)x;

  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = (T)y_low;
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = (T)x_low;
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low;
  T lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;

  // reference in forward
  // T v1 = input[y_low * width + x_low];
  // T v2 = input[y_low * width + x_high];
  // T v3 = input[y_high * width + x_low];
  // T v4 = input[y_high * width + x_high];
  // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);

  w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
}

template <typename T>
201
__global__ void ps_roi_align_backward_kernel_impl(
202
    int nthreads,
203
204
    const T* grad_output,
    const int* channel_mapping,
205
    int num_rois,
206
    const T spatial_scale,
207
208
209
210
211
212
213
    int channels,
    int height,
    int width,
    int pooled_height,
    int pooled_width,
    int sampling_ratio,
    int channels_out,
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
    T* grad_input,
    const T* rois) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, *, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int n = index / pooled_width / pooled_height / channels_out;

    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];

    // Do not using rounding; this implementation detail is critical
    T roi_start_w = offset_rois[1] * spatial_scale - static_cast<T>(0.5);
    T roi_start_h = offset_rois[2] * spatial_scale - static_cast<T>(0.5);
    T roi_end_w = offset_rois[3] * spatial_scale - static_cast<T>(0.5);
    T roi_end_h = offset_rois[4] * spatial_scale - static_cast<T>(0.5);

    // Force too small ROIs to be 1x1
    T roi_width = roi_end_w - roi_start_w;
    T roi_height = roi_end_h - roi_start_h;
    T bin_size_h = roi_height / static_cast<T>(pooled_height);
    T bin_size_w = roi_width / static_cast<T>(pooled_width);

    int c_in = channel_mapping[index];
    T* grad_input_offset =
        grad_input + (roi_batch_ind * channels + c_in) * height * width;

    // Do not using floor/ceil; this implementation detail is critical
    T hstart = static_cast<T>(ph) * bin_size_h + roi_start_h;
    T wstart = static_cast<T>(pw) * bin_size_w + roi_start_w;

    const T grad_output_this_bin = grad_output[index];

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : ceil(roi_height / pooled_height); // e.g., = 2
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
    const T count = roi_bin_grid_h * roi_bin_grid_w;

    for (int iy = 0; iy < roi_bin_grid_h; iy++) {
      const T y = hstart +
          static_cast<T>(iy + .5f) * bin_size_h /
              static_cast<T>(roi_bin_grid_h);
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = wstart +
            static_cast<T>(ix + .5f) * bin_size_w /
                static_cast<T>(roi_bin_grid_w);

        T w1, w2, w3, w4;
        int x_low, x_high, y_low, y_high;

        bilinear_interpolate_gradient(
            height,
            width,
            y,
            x,
            w1,
            w2,
            w3,
            w4,
            x_low,
            x_high,
            y_low,
            y_high,
            index);

        T g1 = grad_output_this_bin * w1 / count;
        T g2 = grad_output_this_bin * w2 / count;
        T g3 = grad_output_this_bin * w3 / count;
        T g4 = grad_output_this_bin * w4 / count;

        if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
          atomicAdd(grad_input_offset + y_low * width + x_low, g1);
          atomicAdd(grad_input_offset + y_low * width + x_high, g2);
          atomicAdd(grad_input_offset + y_high * width + x_low, g3);
          atomicAdd(grad_input_offset + y_high * width + x_high, g4);
        } // if
      } // ix
    } // iy
  }
}

298
299
300
} // namespace

std::tuple<at::Tensor, at::Tensor> ps_roi_align_forward_cuda(
301
302
    const at::Tensor& input,
    const at::Tensor& rois,
303
304
305
306
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t sampling_ratio) {
307
  // Check if input tensors are CUDA tensors
vfdev's avatar
vfdev committed
308
309
310
311
  TORCH_CHECK(input.is_cuda(), "input must be a CUDA tensor");
  TORCH_CHECK(rois.is_cuda(), "rois must be a CUDA tensor");
  TORCH_CHECK(
      rois.size(1) == 5, "Tensor rois should have shape as Tensor[K, 5]");
312
313
314

  at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};

315
  at::CheckedFrom c = "ps_roi_align_forward_cuda";
316
317
318
319
320
321
322
323
324
325
  at::checkAllSameGPU(c, {input_t, rois_t});
  at::checkAllSameType(c, {input_t, rois_t});

  at::cuda::CUDAGuard device_guard(input.device());

  auto num_rois = rois.size(0);
  auto channels = input.size(1);
  auto height = input.size(2);
  auto width = input.size(3);

vfdev's avatar
vfdev committed
326
  TORCH_CHECK(
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
      channels % (pooled_height * pooled_width) == 0,
      "input channels must be a multiple of pooling height * pooling width");
  int channels_out = channels / (pooled_height * pooled_width);

  auto output = at::zeros(
      {num_rois, channels_out, pooled_height, pooled_width}, input.options());
  auto channel_mapping =
      at::zeros(output.sizes(), input.options().dtype(at::kInt));

  auto output_size = output.numel();
  if (output_size == 0) {
    AT_CUDA_CHECK(cudaGetLastError());
    return std::make_tuple(output, channel_mapping);
  }

  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

344
  dim3 grid(std::min(
345
      ceil_div(static_cast<int64_t>(output_size), static_cast<int64_t>(512)),
346
      static_cast<int64_t>(4096)));
347
348
  dim3 block(512);

349
  auto input_ = input.contiguous(), rois_ = rois.contiguous();
350
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
351
352
      input.scalar_type(), "ps_roi_align_forward_cuda", [&] {
        ps_roi_align_forward_kernel_impl<scalar_t><<<grid, block, 0, stream>>>(
353
            output_size,
354
            input_.data_ptr<scalar_t>(),
355
356
357
358
359
360
361
            spatial_scale,
            channels,
            height,
            width,
            pooled_height,
            pooled_width,
            sampling_ratio,
362
            rois_.data_ptr<scalar_t>(),
363
            channels_out,
364
365
            output.data_ptr<scalar_t>(),
            channel_mapping.data_ptr<int>());
366
367
368
369
370
371
      });
  AT_CUDA_CHECK(cudaGetLastError());
  cudaDeviceSynchronize();
  return std::make_tuple(output, channel_mapping);
}

372
at::Tensor ps_roi_align_backward_cuda(
373
374
375
    const at::Tensor& grad,
    const at::Tensor& rois,
    const at::Tensor& channel_mapping,
376
377
378
379
380
381
382
383
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t sampling_ratio,
    int64_t batch_size,
    int64_t channels,
    int64_t height,
    int64_t width) {
384
  // Check if input tensors are CUDA tensors
vfdev's avatar
vfdev committed
385
386
387
  TORCH_CHECK(grad.is_cuda(), "grad must be a CUDA tensor");
  TORCH_CHECK(rois.is_cuda(), "rois must be a CUDA tensor");
  TORCH_CHECK(
388
      channel_mapping.is_cuda(), "channel_mapping must be a CUDA tensor");
389
390
391
392

  at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2},
      channel_mapping_t{channel_mapping, "channel_mapping", 3};

393
  at::CheckedFrom c = "ps_roi_align_backward_cuda";
394
395
396
397
398
399
400
401
402
403
404
  at::checkAllSameGPU(c, {grad_t, rois_t, channel_mapping_t});
  at::checkAllSameType(c, {grad_t, rois_t});

  at::cuda::CUDAGuard device_guard(grad.device());

  auto num_rois = rois.size(0);
  auto grad_input =
      at::zeros({batch_size, channels, height, width}, grad.options());

  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

405
  dim3 grid(std::min(
406
      ceil_div(static_cast<int64_t>(grad.numel()), static_cast<int64_t>(512)),
407
      static_cast<int64_t>(4096)));
408
409
410
411
412
413
414
415
416
417
  dim3 block(512);

  // handle possibly empty gradients
  if (grad.numel() == 0) {
    AT_CUDA_CHECK(cudaGetLastError());
    return grad_input;
  }

  int channels_out = channels / (pooled_height * pooled_width);

418
  auto grad_ = grad.contiguous(), rois_ = rois.contiguous();
419
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
420
421
      grad.scalar_type(), "ps_roi_align_backward_cuda", [&] {
        ps_roi_align_backward_kernel_impl<scalar_t><<<grid, block, 0, stream>>>(
422
            grad.numel(),
423
            grad_.data_ptr<scalar_t>(),
424
            channel_mapping.data_ptr<int>(),
425
426
427
428
429
430
431
432
433
            num_rois,
            spatial_scale,
            channels,
            height,
            width,
            pooled_height,
            pooled_width,
            sampling_ratio,
            channels_out,
434
            grad_input.data_ptr<scalar_t>(),
435
            rois_.data_ptr<scalar_t>());
436
437
438
439
      });
  AT_CUDA_CHECK(cudaGetLastError());
  return grad_input;
}
440
441
442

} // namespace ops
} // namespace vision