nms_kernel.cu 4.96 KB
Newer Older
1
2
3
4
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>

#include "cuda_helpers.h"
5
#include "nms_kernel.h"
6

7
8
9
10
namespace vision {
namespace ops {

namespace {
11
12
13
14

int const threadsPerBlock = sizeof(unsigned long long) * 8;

template <typename T>
15
16
17
18
__device__ inline bool devIoU(
    T const* const a,
    T const* const b,
    const float threshold) {
19
20
21
22
23
24
  T left = max(a[0], b[0]), right = min(a[2], b[2]);
  T top = max(a[1], b[1]), bottom = min(a[3], b[3]);
  T width = max(right - left, (T)0), height = max(bottom - top, (T)0);
  T interS = width * height;
  T Sa = (a[2] - a[0]) * (a[3] - a[1]);
  T Sb = (b[2] - b[0]) * (b[3] - b[1]);
25
  return (interS / (Sa + Sb - interS)) > threshold;
26
27
28
}

template <typename T>
29
__global__ void nms_kernel_impl(
Vasilis Vryniotis's avatar
Vasilis Vryniotis committed
30
31
    int n_boxes,
    double iou_threshold,
32
33
34
35
36
    const T* dev_boxes,
    unsigned long long* dev_mask) {
  const int row_start = blockIdx.y;
  const int col_start = blockIdx.x;

37
38
  if (row_start > col_start)
    return;
39
40
41
42
43
44

  const int row_size =
      min(n_boxes - row_start * threadsPerBlock, threadsPerBlock);
  const int col_size =
      min(n_boxes - col_start * threadsPerBlock, threadsPerBlock);

45
  __shared__ T block_boxes[threadsPerBlock * 4];
46
  if (threadIdx.x < col_size) {
47
48
49
50
51
52
53
54
    block_boxes[threadIdx.x * 4 + 0] =
        dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 4 + 0];
    block_boxes[threadIdx.x * 4 + 1] =
        dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 4 + 1];
    block_boxes[threadIdx.x * 4 + 2] =
        dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 4 + 2];
    block_boxes[threadIdx.x * 4 + 3] =
        dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 4 + 3];
55
56
57
58
59
  }
  __syncthreads();

  if (threadIdx.x < row_size) {
    const int cur_box_idx = threadsPerBlock * row_start + threadIdx.x;
60
    const T* cur_box = dev_boxes + cur_box_idx * 4;
61
62
63
64
65
66
67
    int i = 0;
    unsigned long long t = 0;
    int start = 0;
    if (row_start == col_start) {
      start = threadIdx.x + 1;
    }
    for (i = start; i < col_size; i++) {
Yuxin Wu's avatar
Yuxin Wu committed
68
      if (devIoU<T>(cur_box, block_boxes + i * 4, iou_threshold)) {
69
70
71
        t |= 1ULL << i;
      }
    }
72
    const int col_blocks = ceil_div(n_boxes, threadsPerBlock);
73
74
75
76
    dev_mask[cur_box_idx * col_blocks + col_start] = t;
  }
}

77
78
79
80
} // namespace

at::Tensor nms_cuda(
    const at::Tensor& dets,
81
    const at::Tensor& scores,
Vasilis Vryniotis's avatar
Vasilis Vryniotis committed
82
    double iou_threshold) {
vfdev's avatar
vfdev committed
83
84
  TORCH_CHECK(dets.is_cuda(), "dets must be a CUDA tensor");
  TORCH_CHECK(scores.is_cuda(), "scores must be a CUDA tensor");
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

  TORCH_CHECK(
      dets.dim() == 2, "boxes should be a 2d tensor, got ", dets.dim(), "D");
  TORCH_CHECK(
      dets.size(1) == 4,
      "boxes should have 4 elements in dimension 1, got ",
      dets.size(1));
  TORCH_CHECK(
      scores.dim() == 1,
      "scores should be a 1d tensor, got ",
      scores.dim(),
      "D");
  TORCH_CHECK(
      dets.size(0) == scores.size(0),
      "boxes and scores should have same number of elements in ",
      "dimension 0, got ",
      dets.size(0),
      " and ",
      scores.size(0))

105
#if defined(WITH_CUDA) || defined(WITH_HIP)
106
  at::cuda::CUDAGuard device_guard(dets.device());
107
#else
vfdev's avatar
vfdev committed
108
  TORCH_CHECK(false, "Not compiled with GPU support");
109
110
111
112
113
#endif

  if (dets.numel() == 0) {
    return at::empty({0}, dets.options().dtype(at::kLong));
  }
114
115

  auto order_t = std::get<1>(scores.sort(0, /* descending=*/true));
116
  auto dets_sorted = dets.index_select(0, order_t).contiguous();
117

118
  int dets_num = dets.size(0);
119

120
  const int col_blocks = ceil_div(dets_num, threadsPerBlock);
121
122

  at::Tensor mask =
123
      at::empty({dets_num * col_blocks}, dets.options().dtype(at::kLong));
124
125
126
127
128
129

  dim3 blocks(col_blocks, col_blocks);
  dim3 threads(threadsPerBlock);
  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
130
131
      dets_sorted.scalar_type(), "nms_cuda", [&] {
        nms_kernel_impl<scalar_t><<<blocks, threads, 0, stream>>>(
132
133
            dets_num,
            iou_threshold,
134
135
            dets_sorted.data_ptr<scalar_t>(),
            (unsigned long long*)mask.data_ptr<int64_t>());
136
137
138
      });

  at::Tensor mask_cpu = mask.to(at::kCPU);
139
140
  unsigned long long* mask_host =
      (unsigned long long*)mask_cpu.data_ptr<int64_t>();
141
142
143
144
145

  std::vector<unsigned long long> remv(col_blocks);
  memset(&remv[0], 0, sizeof(unsigned long long) * col_blocks);

  at::Tensor keep =
146
      at::empty({dets_num}, dets.options().dtype(at::kLong).device(at::kCPU));
147
  int64_t* keep_out = keep.data_ptr<int64_t>();
148
149

  int num_to_keep = 0;
150
  for (int i = 0; i < dets_num; i++) {
151
152
153
154
155
156
157
158
159
160
161
162
163
    int nblock = i / threadsPerBlock;
    int inblock = i % threadsPerBlock;

    if (!(remv[nblock] & (1ULL << inblock))) {
      keep_out[num_to_keep++] = i;
      unsigned long long* p = mask_host + i * col_blocks;
      for (int j = nblock; j < col_blocks; j++) {
        remv[j] |= p[j];
      }
    }
  }

  AT_CUDA_CHECK(cudaGetLastError());
Francisco Massa's avatar
Francisco Massa committed
164
165
166
  return order_t.index(
      {keep.narrow(/*dim=*/0, /*start=*/0, /*length=*/num_to_keep)
           .to(order_t.device(), keep.scalar_type())});
167
}
168
169
170

} // namespace ops
} // namespace vision