ps_roi_pool_kernel.cpp 8.84 KB
Newer Older
1
2
3
4
5
6
#include "ps_roi_pool_kernel.h"

namespace vision {
namespace ops {

namespace {
7
8
9
10
11
12
13

template <class T>
inline void add(T* address, const T& val) {
  *address += val;
}

template <typename T>
14
void ps_roi_pool_forward_kernel_impl(
15
16
    const T* input,
    const T spatial_scale,
17
18
19
20
21
    int channels,
    int height,
    int width,
    int pooled_height,
    int pooled_width,
22
    const T* rois,
23
24
    int channels_out,
    int num_rois,
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    T* output,
    int* channel_mapping) {
  for (int n = 0; n < num_rois; ++n) {
    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];
    int roi_start_w = round(offset_rois[1] * spatial_scale);
    int roi_start_h = round(offset_rois[2] * spatial_scale);
    int roi_end_w = round(offset_rois[3] * spatial_scale);
    int roi_end_h = round(offset_rois[4] * spatial_scale);

    // Force too small ROIs to be 1x1
    int roi_width = std::max(roi_end_w - roi_start_w, 1);
    int roi_height = std::max(roi_end_h - roi_start_h, 1);
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    int c_in = 0;
    for (int c_out = 0; c_out < channels_out; ++c_out) {
      for (int ph = 0; ph < pooled_height; ++ph) {
        for (int pw = 0; pw < pooled_width; ++pw) {
          int hstart = static_cast<int>(floor(static_cast<T>(ph) * bin_size_h));
          int wstart = static_cast<int>(floor(static_cast<T>(pw) * bin_size_w));
          int hend =
              static_cast<int>(ceil(static_cast<T>(ph + 1) * bin_size_h));
          int wend =
              static_cast<int>(ceil(static_cast<T>(pw + 1) * bin_size_w));

          // Add roi offsets and clip to input boundaries
          hstart = std::min(std::max(hstart + roi_start_h, 0), height - 1);
          hend = std::min(std::max(hend + roi_start_h, 0), height - 1);
          wstart = std::min(std::max(wstart + roi_start_w, 0), width - 1);
          wend = std::min(std::max(wend + roi_start_w, 0), width - 1);
          bool is_empty = (hend <= hstart) || (wend <= wstart);

          const T* offset_input =
              input + (roi_batch_ind * channels + c_in) * height * width;

          T out_sum = 0;
          for (int h = hstart; h < hend; ++h) {
            for (int w = wstart; w < wend; ++w) {
              int input_index = h * width + w;
              out_sum += offset_input[input_index];
            }
          }

          int index =
              ((n * channels_out + c_out) * pooled_height + ph) * pooled_width +
              pw;
          T bin_area = (hend - hstart) * (wend - wstart);
          output[index] = is_empty ? static_cast<T>(0) : out_sum / bin_area;
          channel_mapping[index] = c_in;
          c_in++;
        }
      }
    }
  }
}

template <typename T>
84
void ps_roi_pool_backward_kernel_impl(
85
86
    const T* grad_output,
    const int* channel_mapping,
87
    int num_rois,
88
    const T spatial_scale,
89
90
91
92
93
94
    int channels,
    int height,
    int width,
    int pooled_height,
    int pooled_width,
    int channels_out,
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    T* grad_input,
    const T* rois) {
  for (int n = 0; n < num_rois; ++n) {
    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];
    int roi_start_w = roundf(offset_rois[1] * spatial_scale);
    int roi_start_h = roundf(offset_rois[2] * spatial_scale);
    int roi_end_w = roundf(offset_rois[3] * spatial_scale);
    int roi_end_h = roundf(offset_rois[4] * spatial_scale);

    // Force too small ROIs to be 1x1
    int roi_width = std::max(roi_end_w - roi_start_w, 1);
    int roi_height = std::max(roi_end_h - roi_start_h, 1);
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    for (int ph = 0; ph < pooled_height; ++ph) {
      for (int pw = 0; pw < pooled_width; ++pw) {
        int hstart = static_cast<int>(floor(static_cast<T>(ph) * bin_size_h));
        int wstart = static_cast<int>(floor(static_cast<T>(pw) * bin_size_w));
        int hend = static_cast<int>(ceil(static_cast<T>(ph + 1) * bin_size_h));
        int wend = static_cast<int>(ceil(static_cast<T>(pw + 1) * bin_size_w));

        // Add roi offsets and clip to input boundaries
        hstart = std::min(std::max(hstart + roi_start_h, 0), height);
        hend = std::min(std::max(hend + roi_start_h, 0), height);
        wstart = std::min(std::max(wstart + roi_start_w, 0), width);
        wend = std::min(std::max(wend + roi_start_w, 0), width);
        bool is_empty = (hend <= hstart) || (wend <= wstart);

        for (int c_out = 0; c_out < channels_out; ++c_out) {
          int index =
              ((n * channels_out + c_out) * pooled_height + ph) * pooled_width +
              pw;
          int c_in = channel_mapping[index];

          T* grad_input_offset =
              grad_input + (roi_batch_ind * channels + c_in) * height * width;
          T bin_area = (hend - hstart) * (wend - wstart);
          T diff_val =
              is_empty ? static_cast<T>(0) : grad_output[index] / bin_area;
          for (int h = hstart; h < hend; ++h) {
            for (int w = wstart; w < wend; ++w) {
              int grad_input_index = h * width + w;
              add(grad_input_offset + grad_input_index, diff_val);
            }
          }
        }
      }
    }
  }
}

148
149
150
} // namespace

std::tuple<at::Tensor, at::Tensor> ps_roi_pool_forward_cpu(
151
152
    const at::Tensor& input,
    const at::Tensor& rois,
153
154
155
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width) {
156
  // Check if input tensors are CPU tensors
vfdev's avatar
vfdev committed
157
158
159
160
  TORCH_CHECK(input.device().is_cpu(), "input must be a CPU tensor");
  TORCH_CHECK(rois.device().is_cpu(), "rois must be a CPU tensor");
  TORCH_CHECK(
      rois.size(1) == 5, "Tensor rois should have shape as Tensor[K, 5]");
161
162
163

  at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};

164
  at::CheckedFrom c = "ps_roi_pool_forward_cpu";
165
166
167
168
169
170
171
  at::checkAllSameType(c, {input_t, rois_t});

  int num_rois = rois.size(0);
  int channels = input.size(1);
  int height = input.size(2);
  int width = input.size(3);

vfdev's avatar
vfdev committed
172
  TORCH_CHECK(
173
174
175
176
177
178
179
180
181
182
183
184
185
186
      channels % (pooled_height * pooled_width) == 0,
      "input channels must be a multiple of pooling height * pooling width");
  int channels_out = channels / (pooled_height * pooled_width);

  auto output = at::zeros(
      {num_rois, channels_out, pooled_height, pooled_width}, input.options());
  auto channel_mapping =
      at::zeros(output.sizes(), input.options().dtype(at::kInt));

  auto output_size = output.numel();
  if (output_size == 0) {
    return std::make_tuple(output, channel_mapping);
  }

187
  auto input_ = input.contiguous(), rois_ = rois.contiguous();
188
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
189
190
      input.scalar_type(), "ps_roi_pool_forward_cpu", [&] {
        ps_roi_pool_forward_kernel_impl<scalar_t>(
191
            input_.data_ptr<scalar_t>(),
192
193
194
195
196
197
            spatial_scale,
            channels,
            height,
            width,
            pooled_height,
            pooled_width,
198
            rois_.data_ptr<scalar_t>(),
199
200
            channels_out,
            num_rois,
201
202
            output.data_ptr<scalar_t>(),
            channel_mapping.data_ptr<int>());
203
204
205
206
      });
  return std::make_tuple(output, channel_mapping);
}

207
at::Tensor ps_roi_pool_backward_cpu(
208
209
210
    const at::Tensor& grad,
    const at::Tensor& rois,
    const at::Tensor& channel_mapping,
211
212
213
214
215
216
217
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t batch_size,
    int64_t channels,
    int64_t height,
    int64_t width) {
218
  // Check if input tensors are CPU tensors
vfdev's avatar
vfdev committed
219
220
221
  TORCH_CHECK(grad.device().is_cpu(), "grad must be a CPU tensor");
  TORCH_CHECK(rois.device().is_cpu(), "rois must be a CPU tensor");
  TORCH_CHECK(
222
223
224
225
226
227
      channel_mapping.device().is_cpu(),
      "channel_mapping must be a CPU tensor");

  at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2},
      channel_mapping_t{channel_mapping, "channel_mapping", 3};

228
  at::CheckedFrom c = "ps_roi_pool_backward_cpu";
229
230
231
232
233
234
235
236
237
238
239
240
241
  at::checkAllSameType(c, {grad_t, rois_t});

  auto num_rois = rois.size(0);
  auto grad_input =
      at::zeros({batch_size, channels, height, width}, grad.options());

  // handle possibly empty gradients
  if (grad.numel() == 0) {
    return grad_input;
  }

  int channels_out = channels / (pooled_height * pooled_width);

242
  auto grad_ = grad.contiguous(), rois_ = rois.contiguous();
243
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
244
245
      grad.scalar_type(), "ps_roi_pool_backward_cpu", [&] {
        ps_roi_pool_backward_kernel_impl<scalar_t>(
246
            grad_.data_ptr<scalar_t>(),
247
            channel_mapping.data_ptr<int>(),
248
249
250
251
252
253
254
255
            num_rois,
            spatial_scale,
            channels,
            height,
            width,
            pooled_height,
            pooled_width,
            channels_out,
256
            grad_input.data_ptr<scalar_t>(),
257
            rois_.data_ptr<scalar_t>());
258
259
260
      });
  return grad_input;
}
261
262
263

} // namespace ops
} // namespace vision