deform_conv2d_kernel.cpp 33.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
/*!
 ******************* BEGIN Caffe Copyright Notice and Disclaimer
 *****************
 *
 * COPYRIGHT
 *
 * All contributions by the University of California:
 * Copyright (c) 2014-2017 The Regents of the University of California (Regents)
 * All rights reserved.
 *
 * All other contributions:
 * Copyright (c) 2014-2017, the respective contributors
 * All rights reserved.
 *
 * Caffe uses a shared copyright model: each contributor holds copyright over
 * their contributions to Caffe. The project versioning records all such
 * contribution and copyright details. If a contributor wants to further mark
 * their specific copyright on a particular contribution, they should indicate
 * their copyright solely in the commit message of the change when it is
 * committed.
 *
 * LICENSE
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 *AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 *IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
 *FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 *DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 *SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 *OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * CONTRIBUTION AGREEMENT
 *
 * By contributing to the BVLC/caffe repository through pull-request, comment,
 * or otherwise, the contributor releases their content to the
 * license and copyright terms herein.
 *
 ***************** END Caffe Copyright Notice and Disclaimer
 *********************
 *
 * Copyright (c) 2018 Microsoft
 * Licensed under The MIT License [see LICENSE for details]
 * \file modulated_deformable_im2col.cuh
 * \brief Function definitions of converting an image to
 * column matrix based on kernel, padding, dilation, and offset.
 * These functions are mainly used in deformable convolution operators.
 * \ref: https://arxiv.org/abs/1703.06211
 * \author Yuwen Xiong, Haozhi Qi, Jifeng Dai, Xizhou Zhu, Han Hu, Dazhi Cheng
 */

// modified from
// https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda_kernel.cu

// modified from
// https://github.com/open-mmlab/mmdetection/blob/master/mmdet/ops/dcn/src/deform_conv_cuda.cpp

69
#include "deform_conv2d_kernel.h"
70

71
72
73
74
namespace vision {
namespace ops {

namespace {
75
76
77
78

const int kMaxParallelImgs = 32;

template <typename scalar_t>
79
scalar_t bilinear_interpolate(
80
    const scalar_t* in,
81
82
    int height,
    int width,
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    scalar_t h,
    scalar_t w) {
  if (h <= -1 || height <= h || w <= -1 || width <= w) {
    return 0;
  }

  int h_low = floor(h);
  int w_low = floor(w);
  int h_high = h_low + 1;
  int w_high = w_low + 1;

  scalar_t lh = h - h_low;
  scalar_t lw = w - w_low;
  scalar_t hh = 1 - lh, hw = 1 - lw;

  scalar_t v1 = 0;
  if (h_low >= 0 && w_low >= 0)
    v1 = in[h_low * width + w_low];
  scalar_t v2 = 0;
  if (h_low >= 0 && w_high <= width - 1)
    v2 = in[h_low * width + w_high];
  scalar_t v3 = 0;
  if (h_high <= height - 1 && w_low >= 0)
    v3 = in[h_high * width + w_low];
  scalar_t v4 = 0;
  if (h_high <= height - 1 && w_high <= width - 1)
    v4 = in[h_high * width + w_high];

  scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;

  scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
  return val;
}

template <typename scalar_t>
118
void deformable_im2col_kernel(
119
    int n,
120
121
    const scalar_t* input,
    const scalar_t* offset,
122
    const scalar_t* mask,
123
124
125
126
127
128
129
130
    int height,
    int width,
    int weight_h,
    int weight_w,
    int pad_h,
    int pad_w,
    int stride_h,
    int stride_w,
131
132
    int dilation_h,
    int dilation_w,
133
134
135
136
137
    int batch_sz,
    int n_in_channels,
    int n_offset_grps,
    int out_h,
    int out_w,
138
    bool use_mask,
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    scalar_t* columns) {
  for (int index = 0; index != n; ++index) {
    const int out_x = index % out_w;
    const int out_y = (index / out_w) % out_h;
    const int out_b = (index / (out_w * out_h)) % batch_sz;
    const int in_c = index / (out_w * out_h * batch_sz);
    const int out_c = in_c * weight_h * weight_w;

    int c_per_offset_grp = n_in_channels / n_offset_grps;
    const int grp_idx = in_c / c_per_offset_grp;

    auto columns_ptr = columns +
        (out_c * (batch_sz * out_h * out_w) + out_b * (out_h * out_w) +
         out_y * out_w + out_x);

    auto input_ptr = input +
        (out_b * (n_in_channels * height * width) + in_c * (height * width));

    auto offset_ptr = offset +
        (out_b * n_offset_grps + grp_idx) * 2 * weight_h * weight_w * out_h *
            out_w;

161
162
163
164
165
166
    auto mask_ptr = mask;
    if (use_mask) {
      mask_ptr += (out_b * n_offset_grps + grp_idx) * weight_h * weight_w *
          out_h * out_w;
    }

167
168
    for (int i = 0; i < weight_h; ++i) {
      for (int j = 0; j < weight_w; ++j) {
169
170
171
172
173
174
175
176
177
        const int mask_idx = i * weight_w + j;
        const int offset_idx = 2 * mask_idx;

        scalar_t mask_value = 1;
        if (use_mask) {
          mask_value =
              mask_ptr[mask_idx * (out_h * out_w) + out_y * out_w + out_x];
        }

178
179
180
181
        const scalar_t offset_h =
            offset_ptr[offset_idx * (out_h * out_w) + out_y * out_w + out_x];
        const scalar_t offset_w = offset_ptr
            [(offset_idx + 1) * (out_h * out_w) + out_y * out_w + out_x];
182
183
184
185
        const scalar_t y =
            (out_y * stride_h - pad_h) + i * dilation_h + offset_h;
        const scalar_t x =
            (out_x * stride_w - pad_w) + j * dilation_w + offset_w;
186
187
        *columns_ptr =
            mask_value * bilinear_interpolate(input_ptr, height, width, y, x);
188
189
190
191
192
193
        columns_ptr += batch_sz * out_h * out_w;
      }
    }
  }
}

194
void deformable_im2col(
195
196
    const at::Tensor& input,
    const at::Tensor& data_offset,
197
    const at::Tensor& data_mask,
198
199
200
201
202
203
204
205
206
    int n_in_channels,
    int height,
    int width,
    int weight_h,
    int weight_w,
    int pad_h,
    int pad_w,
    int stride_h,
    int stride_w,
207
208
    int dilation_h,
    int dilation_w,
209
210
211
212
    int out_h,
    int out_w,
    int parallel_imgs,
    int deformable_group,
213
    bool use_mask,
214
215
216
217
218
219
220
221
222
    at::Tensor data_col) {
  int num_kernels = n_in_channels * out_h * out_w * parallel_imgs;

  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
      input.scalar_type(), "deformable_im2col", ([&] {
        deformable_im2col_kernel(
            num_kernels,
            input.data_ptr<scalar_t>(),
            data_offset.data_ptr<scalar_t>(),
223
            data_mask.data_ptr<scalar_t>(),
224
225
226
227
228
229
230
231
            height,
            width,
            weight_h,
            weight_w,
            pad_h,
            pad_w,
            stride_h,
            stride_w,
232
233
            dilation_h,
            dilation_w,
234
235
236
237
238
            parallel_imgs,
            n_in_channels,
            deformable_group,
            out_h,
            out_w,
239
            use_mask,
240
241
242
243
            data_col.data_ptr<scalar_t>());
      }));
}

244
int get_greatest_divisor_below_bound(int n, int bound) {
245
246
247
248
249
250
251
252
253
  for (int k = bound; k > 1; --k) {
    if (n % k == 0) {
      return k;
    }
  }
  return 1;
}

template <typename scalar_t>
254
void deformable_col2im_kernel(
255
    int n,
256
257
    const scalar_t* col,
    const scalar_t* offset,
258
    const scalar_t* mask,
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
    int channels,
    int height,
    int width,
    int kernel_h,
    int kernel_w,
    int pad_h,
    int pad_w,
    int stride_h,
    int stride_w,
    int dilation_h,
    int dilation_w,
    int batch_sz,
    int n_offset_grps,
    int out_h,
    int out_w,
274
    bool use_mask,
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    scalar_t* grad_im) {
  for (int index = 0; index != n; ++index) {
    const int out_x = index % out_w;
    const int out_y = (index / out_w) % out_h;
    const int b = (index / (out_w * out_h)) % batch_sz;
    const int j = (index / (out_w * out_h * batch_sz)) % kernel_w;
    const int i = (index / (out_w * out_h * batch_sz * kernel_w)) % kernel_h;
    const int c = index / (out_w * out_h * batch_sz * kernel_w * kernel_h);

    int c_per_offset_grp = channels / n_offset_grps;
    const int offset_grp = c / c_per_offset_grp;

    auto offset_ptr = offset +
        (b * n_offset_grps + offset_grp) * 2 * kernel_h * kernel_w * out_h *
            out_w;
290
291
292
293
294
295
296
297
298
299
300
301
302

    auto mask_ptr = mask;
    if (use_mask) {
      mask_ptr += (b * n_offset_grps + offset_grp) * kernel_h * kernel_w *
          out_h * out_w;
    }

    const int mask_idx = i * kernel_w + j;
    const int offset_idx = 2 * mask_idx;

    const int offset_h_ptr = ((offset_idx)*out_h + out_y) * out_w + out_x;
    const int offset_w_ptr = ((offset_idx + 1) * out_h + out_y) * out_w + out_x;

303
304
    const scalar_t offset_h = offset_ptr[offset_h_ptr];
    const scalar_t offset_w = offset_ptr[offset_w_ptr];
305
306
307
308
309
310

    scalar_t mask_value = 1;
    if (use_mask) {
      mask_value = mask_ptr[(mask_idx * out_h + out_y) * out_w + out_x];
    }

311
312
313
314
315
316
317
318
319
320
321
    const scalar_t y = (out_y * stride_h - pad_h) + i * dilation_h + offset_h;
    const scalar_t x = (out_x * stride_w - pad_w) + j * dilation_w + offset_w;

    for (int dy = -1; dy <= 1; dy++) {
      for (int dx = -1; dx <= 1; dx++) {
        int yp = int(y) + dy;
        int xp = int(x) + dx;
        if (0 <= yp && yp < height && 0 <= xp && xp < width &&
            std::abs(y - yp) < 1 && std::abs(x - xp) < 1) {
          int grad_pos = ((b * channels + c) * height + yp) * width + xp;
          scalar_t weight = (1 - std::abs(y - yp)) * (1 - std::abs(x - xp));
322
          grad_im[grad_pos] += mask_value * weight * col[index];
323
324
325
326
327
328
        }
      }
    }
  }
}

329
void compute_grad_input(
330
331
    const at::Tensor& columns,
    const at::Tensor& offset,
332
    const at::Tensor& mask,
333
334
335
336
337
338
339
340
341
342
343
344
345
    int channels,
    int height,
    int width,
    int weight_h,
    int weight_w,
    int pad_h,
    int pad_w,
    int stride_h,
    int stride_w,
    int dilation_h,
    int dilation_w,
    int parallel_imgs,
    int n_offset_grps,
346
    bool use_mask,
347
348
349
350
351
352
353
354
355
    at::Tensor grad_im) {
  int out_h =
      (height + 2 * pad_h - (dilation_h * (weight_h - 1) + 1)) / stride_h + 1;
  int out_w =
      (width + 2 * pad_w - (dilation_w * (weight_w - 1) + 1)) / stride_w + 1;
  int num_kernels =
      channels * weight_h * weight_w * out_h * out_w * parallel_imgs;

  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
356
      columns.scalar_type(), "compute_grad_input", ([&] {
357
358
359
360
        deformable_col2im_kernel(
            num_kernels,
            columns.data_ptr<scalar_t>(),
            offset.data_ptr<scalar_t>(),
361
            mask.data_ptr<scalar_t>(),
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
            channels,
            height,
            width,
            weight_h,
            weight_w,
            pad_h,
            pad_w,
            stride_h,
            stride_w,
            dilation_h,
            dilation_w,
            parallel_imgs,
            n_offset_grps,
            out_h,
            out_w,
377
            use_mask,
378
379
380
381
382
            grad_im.data_ptr<scalar_t>());
      }));
}

template <typename scalar_t>
383
scalar_t get_coordinate_weight(
384
    const scalar_t* im_data,
385
386
    int height,
    int width,
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
    scalar_t y,
    scalar_t x,
    bool is_y_direction) {
  int y_l = floor(y);
  int x_l = floor(x);
  int y_h = y_l + 1;
  int x_h = x_l + 1;

  bool valid_y_l = 0 <= y_l && y_l < height;
  bool valid_y_h = 0 <= y_h && y_h < height;
  bool valid_x_l = 0 <= x_l && x_l < width;
  bool valid_x_h = 0 <= x_h && x_h < width;

  scalar_t zero = 0;
  scalar_t v_yx = (valid_y_l && valid_x_l) ? im_data[y_l * width + x_l] : zero;
  scalar_t v_yX = (valid_y_l && valid_x_h) ? im_data[y_l * width + x_h] : zero;
  scalar_t v_Yx = (valid_y_h && valid_x_l) ? im_data[y_h * width + x_l] : zero;
  scalar_t v_YX = (valid_y_h && valid_x_h) ? im_data[y_h * width + x_h] : zero;

  if (is_y_direction) {
    scalar_t dx = x - x_l;
    return dx * (v_YX - v_yX) + (1 - dx) * (v_Yx - v_yx);
  } else {
    scalar_t dy = y - y_l;
    return dy * (v_YX - v_Yx) + (1 - dy) * (v_yX - v_yx);
  }
}

template <typename scalar_t>
416
void deformable_col2im_coord_kernel(
417
    int n,
418
419
420
    const scalar_t* col,
    const scalar_t* im,
    const scalar_t* offset,
421
    const scalar_t* mask,
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
    int channels,
    int height,
    int width,
    int weight_h,
    int weight_w,
    int pad_h,
    int pad_w,
    int stride_h,
    int stride_w,
    int dilation_h,
    int dilation_w,
    int batch_sz,
    int offset_channels,
    int n_offset_grps,
    int out_h,
    int out_w,
438
439
440
    bool use_mask,
    scalar_t* grad_offset,
    scalar_t* grad_mask) {
441
  for (int index = 0; index != n; ++index) {
442
443
444
    scalar_t grad_offset_val = 0;
    scalar_t grad_mask_val = 0;

445
446
    int w = index % out_w;
    int h = (index / out_w) % out_h;
447
448
    int w_w = (index / (out_w * out_h * 2)) % weight_w;
    int w_h = (index / (out_w * out_h * 2 * weight_w)) % weight_h;
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
    int c = (index / (out_w * out_h)) % offset_channels;
    int b = index / (out_w * out_h * offset_channels);

    const int offset_grp = c / (2 * weight_h * weight_w);
    const int col_step = weight_h * weight_w;

    int c_per_offset_grp = channels / n_offset_grps;

    auto col_ptr = col +
        offset_grp * c_per_offset_grp * weight_h * weight_w * batch_sz * out_w *
            out_h;
    auto im_ptr = im +
        (b * n_offset_grps + offset_grp) * c_per_offset_grp * height * width;
    auto offset_ptr = offset +
        (b * n_offset_grps + offset_grp) * 2 * weight_h * weight_w * out_h *
            out_w;

466
467
468
469
470
471
    auto mask_ptr = mask;
    if (use_mask) {
      mask_ptr += (b * n_offset_grps + offset_grp) * weight_h * weight_w *
          out_h * out_w;
    }

472
    const int offset_c = c - offset_grp * 2 * weight_h * weight_w;
473
    const bool is_y_direction = offset_c % 2 == 0;
474
475
476
477
478
479
480
481
482
483

    const int c_bound = c_per_offset_grp * weight_h * weight_w;
    for (int col_c = (offset_c / 2); col_c < c_bound; col_c += col_step) {
      const int col_pos = (((col_c * batch_sz + b) * out_h) + h) * out_w + w;

      int out_x = col_pos % out_w;
      int out_y = (col_pos / out_w) % out_h;
      int j = (col_pos / (out_w * out_h * batch_sz)) % weight_w;
      int i = (col_pos / (out_w * out_h * batch_sz * weight_w)) % weight_h;

484
485
      const int mask_idx = i * weight_w + j;

486
      const int offset_h_idx =
487
          (((2 * mask_idx) * out_h + out_y) * out_w + out_x);
488
      const int offset_w_idx =
489
          (((2 * mask_idx + 1) * out_h + out_y) * out_w + out_x);
490
491
492
      const scalar_t offset_h = offset_ptr[offset_h_idx];
      const scalar_t offset_w = offset_ptr[offset_w_idx];

493
494
495
496
497
      scalar_t mask_value = 1;
      if (use_mask) {
        mask_value = mask_ptr[(mask_idx * out_h + out_y) * out_w + out_x];
      }

498
499
500
501
502
      scalar_t y = (out_y * stride_h - pad_h) + i * dilation_h + offset_h;
      scalar_t x = (out_x * stride_w - pad_w) + j * dilation_w + offset_w;

      const scalar_t weight =
          get_coordinate_weight(im_ptr, height, width, y, x, is_y_direction);
503
504
505
506
507
508
509
      grad_offset_val += mask_value * weight * col_ptr[col_pos];

      if (use_mask && is_y_direction) {
        grad_mask_val += col_ptr[col_pos] *
            bilinear_interpolate(im_ptr, height, width, y, x);
      }

510
511
512
      im_ptr += height * width;
    }

513
514
515
516
517
518
519
520
521
522
523
524
    grad_offset[index] = grad_offset_val;

    if (use_mask && is_y_direction) {
      const int idx =
          ((((b * n_offset_grps + offset_grp) * weight_h + w_h) * weight_w +
            w_w) *
               out_h +
           h) *
              out_w +
          w;
      grad_mask[idx] = grad_mask_val;
    }
525
526
527
  }
}

528
void compute_grad_offset_and_mask(
529
530
531
    const at::Tensor& columns,
    const at::Tensor& input,
    const at::Tensor& offset,
532
    const at::Tensor& mask,
533
534
535
536
537
538
539
540
541
542
543
544
545
    int channels,
    int height,
    int width,
    int weight_h,
    int weight_w,
    int pad_h,
    int pad_w,
    int stride_h,
    int stride_w,
    int dilation_h,
    int dilation_w,
    int parallel_imgs,
    int n_offset_grps,
546
547
548
    bool use_mask,
    at::Tensor grad_offset,
    at::Tensor grad_mask) {
549
550
551
552
553
554
555
556
  int out_h =
      (height + 2 * pad_h - (dilation_h * (weight_h - 1) + 1)) / stride_h + 1;
  int out_w =
      (width + 2 * pad_w - (dilation_w * (weight_w - 1) + 1)) / stride_w + 1;
  int num_kernels =
      out_h * out_w * 2 * weight_h * weight_w * n_offset_grps * parallel_imgs;

  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
557
      columns.scalar_type(), "compute_grad_offset_and_mask", ([&] {
558
559
560
561
562
        deformable_col2im_coord_kernel(
            num_kernels,
            columns.data_ptr<scalar_t>(),
            input.data_ptr<scalar_t>(),
            offset.data_ptr<scalar_t>(),
563
            mask.data_ptr<scalar_t>(),
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
            channels,
            height,
            width,
            weight_h,
            weight_w,
            pad_h,
            pad_w,
            stride_h,
            stride_w,
            dilation_h,
            dilation_w,
            parallel_imgs,
            2 * weight_h * weight_w * n_offset_grps,
            n_offset_grps,
            out_h,
            out_w,
580
581
582
            use_mask,
            grad_offset.data_ptr<scalar_t>(),
            grad_mask.data_ptr<scalar_t>());
583
584
585
      }));
}

586
std::tuple<at::Tensor, at::Tensor, at::Tensor> backward_gradient_inputs(
587
588
589
    at::Tensor input,
    at::Tensor weight,
    at::Tensor offset,
590
    at::Tensor mask,
591
    at::Tensor grad_out,
592
593
594
595
    int stride_h,
    int stride_w,
    int pad_h,
    int pad_w,
596
597
    int dilation_h,
    int dilation_w,
598
599
    int n_weight_grps,
    int n_offset_grps,
600
601
    int n_parallel_imgs,
    bool use_mask) {
602
603
604
605
606
607
608
609
610
611
612
  int batch_sz = input.size(0);
  int n_in_channels = input.size(1);
  int in_h = input.size(2);
  int in_w = input.size(3);

  n_parallel_imgs = std::min(batch_sz, n_parallel_imgs);

  long n_out_channels = weight.size(0);
  int weight_h = weight.size(2);
  int weight_w = weight.size(3);

613
614
615
616
  long out_h =
      (in_h + 2 * pad_h - (dilation_h * (weight_h - 1) + 1)) / stride_h + 1;
  long out_w =
      (in_w + 2 * pad_w - (dilation_w * (weight_w - 1) + 1)) / stride_w + 1;
617
618
619

  auto grad_input = at::zeros_like(input);
  auto grad_offset = at::zeros_like(offset);
620
621
  auto grad_mask = at::zeros_like(mask);

622
  if (batch_sz == 0) {
623
    return std::make_tuple(grad_input, grad_offset, grad_mask);
624
  }
625

626
  auto columns = at::empty(
627
628
629
630
      {n_in_channels * weight_w * weight_h, n_parallel_imgs * out_h * out_w},
      input.options());

  // Separate into blocks
631
  grad_input = grad_input.reshape(
632
      {batch_sz / n_parallel_imgs, n_parallel_imgs, n_in_channels, in_h, in_w});
633
  input = input.reshape(
634
      {batch_sz / n_parallel_imgs, n_parallel_imgs, n_in_channels, in_h, in_w});
635

636
637
638
639
640
641
642
643
644
645
646
  grad_offset = grad_offset.reshape({batch_sz / n_parallel_imgs,
                                     n_parallel_imgs,
                                     n_offset_grps * 2 * weight_h * weight_w,
                                     out_h,
                                     out_w});
  offset = offset.reshape({batch_sz / n_parallel_imgs,
                           n_parallel_imgs,
                           n_offset_grps * 2 * weight_h * weight_w,
                           out_h,
                           out_w});

647
648
649
650
651
652
653
654
655
656
657
658
659
  if (use_mask) {
    grad_mask = grad_mask.reshape({batch_sz / n_parallel_imgs,
                                   n_parallel_imgs,
                                   n_offset_grps * weight_h * weight_w,
                                   out_h,
                                   out_w});
    mask = mask.reshape({batch_sz / n_parallel_imgs,
                         n_parallel_imgs,
                         n_offset_grps * weight_h * weight_w,
                         out_h,
                         out_w});
  }

660
661
662
663
664
665
666
667
  grad_out = grad_out
                 .reshape({batch_sz / n_parallel_imgs,
                           n_parallel_imgs,
                           n_weight_grps,
                           n_out_channels / n_weight_grps,
                           out_h,
                           out_w})
                 .permute({0, 2, 3, 1, 4, 5});
668
669
670
671
672
673
674
675
676

  weight = weight.reshape({n_weight_grps,
                           weight.size(0) / n_weight_grps,
                           weight.size(1),
                           weight.size(2),
                           weight.size(3)});

  columns = columns.view(
      {n_weight_grps, columns.size(0) / n_weight_grps, columns.size(1)});
Francisco Massa's avatar
Francisco Massa committed
677

678
  for (int elt = 0; elt < batch_sz / n_parallel_imgs; elt++) {
679
    columns.zero_();
680
681
682
683
684
685
    // Separate into weight groups
    for (int g = 0; g < n_weight_grps; g++) {
      columns[g] = columns[g].addmm_(
          weight[g].flatten(1).transpose(0, 1), grad_out[elt][g].flatten(1));
    }

686
    compute_grad_offset_and_mask(
687
688
689
        columns,
        input[elt],
        offset[elt],
690
        mask[elt],
691
692
693
694
695
696
697
698
699
        n_in_channels,
        in_h,
        in_w,
        weight_h,
        weight_w,
        pad_h,
        pad_w,
        stride_h,
        stride_w,
700
701
        dilation_h,
        dilation_w,
702
703
        n_parallel_imgs,
        n_offset_grps,
704
705
706
        use_mask,
        grad_offset[elt],
        grad_mask[elt]);
707
708
709
710

    compute_grad_input(
        columns,
        offset[elt],
711
        mask[elt],
712
713
714
715
716
717
718
719
720
        n_in_channels,
        in_h,
        in_w,
        weight_h,
        weight_w,
        pad_h,
        pad_w,
        stride_h,
        stride_w,
721
722
        dilation_h,
        dilation_w,
723
724
        n_parallel_imgs,
        n_offset_grps,
725
        use_mask,
726
727
728
729
730
731
732
        grad_input[elt]);
  }

  grad_input = grad_input.view({batch_sz, n_in_channels, in_h, in_w});
  grad_offset = grad_offset.view(
      {batch_sz, n_offset_grps * 2 * weight_h * weight_w, out_h, out_w});

733
734
735
736
737
738
  if (use_mask) {
    grad_mask = grad_mask.view(
        {batch_sz, n_offset_grps * weight_h * weight_w, out_h, out_w});
  }

  return std::make_tuple(grad_input, grad_offset, grad_mask);
739
740
}

741
at::Tensor backward_gradient_parameters(
742
    at::Tensor input,
743
    const at::Tensor& weight,
744
    at::Tensor offset,
745
    at::Tensor mask,
746
    const at::Tensor& grad_out,
747
748
749
750
    int stride_h,
    int stride_w,
    int pad_h,
    int pad_w,
751
752
    int dilation_h,
    int dilation_w,
753
754
    int n_weight_grps,
    int n_offset_grps,
755
756
    int n_parallel_imgs,
    bool use_mask) {
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
  int batch_sz = input.size(0);
  int n_in_channels = input.size(1);
  int in_h = input.size(2);
  int in_w = input.size(3);

  n_parallel_imgs = std::min(batch_sz, n_parallel_imgs);

  long n_out_channels = weight.size(0);
  int weight_h = weight.size(2);
  int weight_w = weight.size(3);

  long out_h = grad_out.size(2);
  long out_w = grad_out.size(3);

  auto grad_weight = at::zeros_like(weight);
772
773
774
  if (batch_sz == 0) {
    return grad_weight;
  }
775

776
777
778
779
780
781
782
783
784
  at::Tensor grad_out_buf = grad_out
                                .reshape({batch_sz / n_parallel_imgs,
                                          n_parallel_imgs,
                                          n_weight_grps,
                                          n_out_channels / n_weight_grps,
                                          out_h,
                                          out_w})
                                .permute({0, 2, 3, 1, 4, 5})
                                .contiguous();
785
786

  input = input.reshape(
787
      {batch_sz / n_parallel_imgs, n_parallel_imgs, n_in_channels, in_h, in_w});
788

789
790
791
792
793
  offset = offset.reshape({batch_sz / n_parallel_imgs,
                           n_parallel_imgs,
                           n_offset_grps * 2 * weight_h * weight_w,
                           out_h,
                           out_w});
794

795
796
797
798
799
800
801
802
  if (use_mask) {
    mask = mask.reshape({batch_sz / n_parallel_imgs,
                         n_parallel_imgs,
                         n_offset_grps * weight_h * weight_w,
                         out_h,
                         out_w});
  }

803
804
805
806
807
  grad_weight = grad_weight.view({n_weight_grps,
                                  grad_weight.size(0) / n_weight_grps,
                                  grad_weight.size(1),
                                  grad_weight.size(2),
                                  grad_weight.size(3)});
808
809
810
811
812
813
814

  auto columns = at::empty(
      {n_weight_grps,
       n_in_channels * weight_w * weight_h / n_weight_grps,
       n_parallel_imgs * out_h * out_w},
      input.options());

815
816
817
818
  for (int elt = 0; elt < batch_sz / n_parallel_imgs; elt++) {
    deformable_im2col(
        input[elt],
        offset[elt],
819
        mask[elt],
820
821
822
823
824
825
826
827
828
        n_in_channels,
        in_h,
        in_w,
        weight_h,
        weight_w,
        pad_h,
        pad_w,
        stride_h,
        stride_w,
829
830
        dilation_h,
        dilation_w,
831
832
833
834
        out_h,
        out_w,
        n_parallel_imgs,
        n_offset_grps,
835
        use_mask,
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
        columns);

    for (int g = 0; g < n_weight_grps; g++) {
      grad_weight[g] =
          grad_weight[g]
              .flatten(1)
              .addmm_(
                  grad_out_buf[elt][g].flatten(1), columns[g].transpose(1, 0))
              .view_as(grad_weight[g]);
    }
  }

  grad_weight = grad_weight.view({grad_weight.size(0) * grad_weight.size(1),
                                  grad_weight.size(2),
                                  grad_weight.size(3),
                                  grad_weight.size(4)});
  return grad_weight;
}

855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
} // namespace

at::Tensor deform_conv2d_forward_cpu(
    const at::Tensor& input,
    const at::Tensor& weight,
    const at::Tensor& offset,
    const at::Tensor& mask,
    const at::Tensor& bias,
    int64_t stride_h,
    int64_t stride_w,
    int64_t pad_h,
    int64_t pad_w,
    int64_t dilation_h,
    int64_t dilation_w,
    int64_t n_weight_grps,
    int64_t n_offset_grps,
    bool use_mask) {
  at::Tensor input_c = input.contiguous();
  at::Tensor offset_c = offset.contiguous();
  at::Tensor weight_c = weight.contiguous();
  at::Tensor mask_c = mask.contiguous();
  at::Tensor bias_c = bias.contiguous();

  TORCH_CHECK(input_c.ndimension() == 4);
  TORCH_CHECK(offset_c.ndimension() == 4);
  TORCH_CHECK(!use_mask || mask_c.ndimension() == 4);
  TORCH_CHECK(weight_c.ndimension() == 4);
  TORCH_CHECK(input_c.device().is_cpu(), "input must be a CPU tensor");

  int batch_sz = input_c.size(0);
  int n_in_channels = input_c.size(1);
  int in_h = input_c.size(2);
  int in_w = input_c.size(3);

  int n_parallel_imgs =
      get_greatest_divisor_below_bound(batch_sz, kMaxParallelImgs);

  // Unpack shapes and args
  int out_channels = weight_c.size(0);
  int weight_h = weight_c.size(2);
  int weight_w = weight_c.size(3);

  int ker_h = dilation_h * (weight_h - 1) + 1;
  int ker_w = dilation_w * (weight_w - 1) + 1;
  int out_h = ((in_h + 2 * pad_h - ker_h) / stride_h) + 1;
  int out_w = ((in_w + 2 * pad_w - ker_w) / stride_w) + 1;

  TORCH_CHECK(
      weight_h > 0 && weight_w > 0,
      "weight_h: ",
      weight_h,
      " weight_w: ",
      weight_w);
  TORCH_CHECK(
      stride_h > 0 && stride_w > 0,
      "stride_h: ",
      stride_h,
      " stride_w: ",
      stride_w);
  TORCH_CHECK(pad_h >= 0 && pad_w >= 0, "pad_h: ", pad_h, " pad_w: ", pad_w);
  TORCH_CHECK(
      dilation_h > 0 && dilation_w > 0,
      "dilation_h: ",
      dilation_h,
      " dilation_w: ",
      dilation_w);

  TORCH_CHECK(weight_c.size(1) * n_weight_grps == input_c.size(1));
  TORCH_CHECK(weight_c.size(0) % n_weight_grps == 0);
  TORCH_CHECK(
      (offset_c.size(1) == n_offset_grps * 2 * weight_h * weight_w),
      "offset.shape[1] is not valid: got: ",
      offset_c.size(1),
      " expected: ",
      n_offset_grps * 2 * weight_h * weight_w);
  TORCH_CHECK(
      (!use_mask || mask_c.size(1) == n_offset_grps * weight_h * weight_w),
      "mask.shape[1] is not valid: got: ",
      mask_c.size(1),
      " expected: ",
      n_offset_grps * weight_h * weight_w);
  TORCH_CHECK(input_c.size(1) % n_offset_grps == 0);

  TORCH_CHECK(
      (offset_c.size(0) == input_c.size(0)), "invalid batch size of offset");
  TORCH_CHECK(
      (offset_c.size(2) == out_h && offset_c.size(3) == out_w),
      "offset output dims: (",
      offset_c.size(2),
      ", ",
      offset_c.size(3),
      ") - ",
      "computed output dims: (",
      out_h,
      ", ",
      out_w,
      ")");
  TORCH_CHECK(
      (mask_c.size(0) == input_c.size(0)), "invalid batch size of mask");
  TORCH_CHECK(
      (!use_mask || (mask_c.size(2) == out_h && mask_c.size(3) == out_w)),
      "offset output dims: (",
      mask_c.size(2),
      ", ",
      mask_c.size(3),
      ") - ",
      "computed output dims: (",
      out_h,
      ", ",
      out_w,
      ")");
  TORCH_CHECK(
      out_h > 0 && out_w > 0,
      "Calculated output size too small - out_h: ",
      out_h,
      " out_w: ",
      out_w);

  auto out =
      at::zeros({batch_sz, out_channels, out_h, out_w}, input_c.options());
  if (batch_sz == 0) {
    return out;
  }

  // Separate batches into blocks
  out = out.view({batch_sz / n_parallel_imgs,
                  n_parallel_imgs,
                  out_channels,
                  out_h,
                  out_w});
  input_c = input_c.view(
      {batch_sz / n_parallel_imgs, n_parallel_imgs, n_in_channels, in_h, in_w});

  offset_c = offset_c.view({batch_sz / n_parallel_imgs,
                            n_parallel_imgs,
                            n_offset_grps * 2 * weight_h * weight_w,
                            out_h,
                            out_w});

  if (use_mask) {
    mask_c = mask_c.view({batch_sz / n_parallel_imgs,
                          n_parallel_imgs,
                          n_offset_grps * weight_h * weight_w,
                          out_h,
                          out_w});
  }

  at::Tensor out_buf = at::zeros(
      {batch_sz / n_parallel_imgs,
       out_channels,
       n_parallel_imgs * out_h,
       out_w},
      out.options());

  // Separate channels into convolution groups
  out_buf = out_buf.view({out_buf.size(0),
                          n_weight_grps,
                          out_buf.size(1) / n_weight_grps,
                          out_buf.size(2),
                          out_buf.size(3)});
  weight_c = weight_c.view({n_weight_grps,
                            weight_c.size(0) / n_weight_grps,
                            weight_c.size(1),
                            weight_c.size(2),
                            weight_c.size(3)});

  // Sample points and perform convolution
  auto columns = at::zeros(
      {n_in_channels * weight_h * weight_w, n_parallel_imgs * out_h * out_w},
      input_c.options());
  for (int b = 0; b < batch_sz / n_parallel_imgs; b++) {
    deformable_im2col(
        input_c[b],
        offset_c[b],
        mask_c[b],
        n_in_channels,
        in_h,
        in_w,
        weight_h,
        weight_w,
        pad_h,
        pad_w,
        stride_h,
        stride_w,
        dilation_h,
        dilation_w,
        out_h,
        out_w,
        n_parallel_imgs,
        n_offset_grps,
        use_mask,
        columns);

    columns = columns.view(
        {n_weight_grps, columns.size(0) / n_weight_grps, columns.size(1)});
    for (int g = 0; g < n_weight_grps; g++) {
      out_buf[b][g] = out_buf[b][g]
                          .flatten(1)
                          .addmm_(weight_c[g].flatten(1), columns[g])
                          .view_as(out_buf[b][g]);
    }
    columns =
        columns.view({columns.size(0) * columns.size(1), columns.size(2)});
  }

  out_buf = out_buf.view({batch_sz / n_parallel_imgs,
                          out_channels,
                          n_parallel_imgs,
                          out_h,
                          out_w});
  out_buf.transpose_(1, 2);
  out.copy_(out_buf);
  out = out.view({batch_sz, out_channels, out_h, out_w});

  return out + bias_c.view({1, out_channels, 1, 1});
}

1072
std::tuple<at::Tensor, at::Tensor, at::Tensor, at::Tensor, at::Tensor>
1073
1074
1075
1076
1077
1078
1079
deform_conv2d_backward_cpu(
    const at::Tensor& grad_out,
    const at::Tensor& input,
    const at::Tensor& weight,
    const at::Tensor& offset,
    const at::Tensor& mask,
    const at::Tensor& bias,
1080
1081
1082
1083
    int64_t stride_h,
    int64_t stride_w,
    int64_t pad_h,
    int64_t pad_w,
1084
1085
    int64_t dilation_h,
    int64_t dilation_w,
1086
    int64_t n_weight_grps,
1087
1088
    int64_t n_offset_grps,
    bool use_mask) {
1089
1090
1091
1092
1093
1094
1095
1096
  at::Tensor grad_out_c = grad_out.contiguous();
  at::Tensor input_c = input.contiguous();
  at::Tensor weight_c = weight.contiguous();
  at::Tensor offset_c = offset.contiguous();
  at::Tensor mask_c = mask.contiguous();
  at::Tensor bias_c = bias.contiguous();

  const int batch_sz = input_c.size(0);
1097
1098
1099
  const int n_parallel_imgs =
      get_greatest_divisor_below_bound(batch_sz, kMaxParallelImgs);

1100
1101
1102
1103
1104
1105
  auto grad_input_and_offset_and_mask = backward_gradient_inputs(
      input_c,
      weight_c,
      offset_c,
      mask_c,
      grad_out_c,
1106
1107
1108
1109
      stride_h,
      stride_w,
      pad_h,
      pad_w,
1110
1111
      dilation_h,
      dilation_w,
1112
1113
      n_weight_grps,
      n_offset_grps,
1114
1115
      n_parallel_imgs,
      use_mask);
1116

1117
1118
1119
  auto grad_input = std::get<0>(grad_input_and_offset_and_mask);
  auto grad_offset = std::get<1>(grad_input_and_offset_and_mask);
  auto grad_mask = std::get<2>(grad_input_and_offset_and_mask);
1120

1121
1122
1123
1124
1125
1126
  auto grad_weight = backward_gradient_parameters(
      input_c,
      weight_c,
      offset_c,
      mask_c,
      grad_out_c,
1127
1128
1129
1130
      stride_h,
      stride_w,
      pad_h,
      pad_w,
1131
1132
      dilation_h,
      dilation_w,
1133
1134
      n_weight_grps,
      n_offset_grps,
1135
1136
      n_parallel_imgs,
      use_mask);
1137

1138
  auto grad_bias = at::ones_like(bias_c) * grad_out_c.sum({0, 2, 3});
1139

1140
1141
  return std::make_tuple(
      grad_input, grad_weight, grad_offset, grad_mask, grad_bias);
1142
}
1143
1144
1145

} // namespace ops
} // namespace vision