voc.py 8.88 KB
Newer Older
1
2
3
4
import os
import sys
import tarfile
import collections
5
6
from .vision import VisionDataset

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
if sys.version_info[0] == 2:
    import xml.etree.cElementTree as ET
else:
    import xml.etree.ElementTree as ET

from PIL import Image
from .utils import download_url, check_integrity

DATASET_YEAR_DICT = {
    '2012': {
        'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar',
        'filename': 'VOCtrainval_11-May-2012.tar',
        'md5': '6cd6e144f989b92b3379bac3b3de84fd',
        'base_dir': 'VOCdevkit/VOC2012'
    },
    '2011': {
        'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2011/VOCtrainval_25-May-2011.tar',
        'filename': 'VOCtrainval_25-May-2011.tar',
        'md5': '6c3384ef61512963050cb5d687e5bf1e',
        'base_dir': 'TrainVal/VOCdevkit/VOC2011'
    },
    '2010': {
        'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2010/VOCtrainval_03-May-2010.tar',
        'filename': 'VOCtrainval_03-May-2010.tar',
        'md5': 'da459979d0c395079b5c75ee67908abb',
        'base_dir': 'VOCdevkit/VOC2010'
    },
    '2009': {
        'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2009/VOCtrainval_11-May-2009.tar',
        'filename': 'VOCtrainval_11-May-2009.tar',
        'md5': '59065e4b188729180974ef6572f6a212',
        'base_dir': 'VOCdevkit/VOC2009'
    },
    '2008': {
        'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2008/VOCtrainval_14-Jul-2008.tar',
        'filename': 'VOCtrainval_11-May-2012.tar',
        'md5': '2629fa636546599198acfcfbfcf1904a',
        'base_dir': 'VOCdevkit/VOC2008'
    },
    '2007': {
        'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar',
        'filename': 'VOCtrainval_06-Nov-2007.tar',
        'md5': 'c52e279531787c972589f7e41ab4ae64',
        'base_dir': 'VOCdevkit/VOC2007'
    }
}


55
class VOCSegmentation(VisionDataset):
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    """`Pascal VOC <http://host.robots.ox.ac.uk/pascal/VOC/>`_ Segmentation Dataset.

    Args:
        root (string): Root directory of the VOC Dataset.
        year (string, optional): The dataset year, supports years 2007 to 2012.
        image_set (string, optional): Select the image_set to use, ``train``, ``trainval`` or ``val``
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """

    def __init__(self,
                 root,
                 year='2012',
                 image_set='train',
                 download=False,
                 transform=None,
77
78
79
                 target_transform=None,
                 transforms=None):
        super(VOCSegmentation, self).__init__(root, transforms, transform, target_transform)
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        self.year = year
        self.url = DATASET_YEAR_DICT[year]['url']
        self.filename = DATASET_YEAR_DICT[year]['filename']
        self.md5 = DATASET_YEAR_DICT[year]['md5']
        self.image_set = image_set
        base_dir = DATASET_YEAR_DICT[year]['base_dir']
        voc_root = os.path.join(self.root, base_dir)
        image_dir = os.path.join(voc_root, 'JPEGImages')
        mask_dir = os.path.join(voc_root, 'SegmentationClass')

        if download:
            download_extract(self.url, self.root, self.filename, self.md5)

        if not os.path.isdir(voc_root):
            raise RuntimeError('Dataset not found or corrupted.' +
                               ' You can use download=True to download it')

        splits_dir = os.path.join(voc_root, 'ImageSets/Segmentation')

        split_f = os.path.join(splits_dir, image_set.rstrip('\n') + '.txt')

        if not os.path.exists(split_f):
            raise ValueError(
                'Wrong image_set entered! Please use image_set="train" '
                'or image_set="trainval" or image_set="val"')

        with open(os.path.join(split_f), "r") as f:
            file_names = [x.strip() for x in f.readlines()]

        self.images = [os.path.join(image_dir, x + ".jpg") for x in file_names]
        self.masks = [os.path.join(mask_dir, x + ".png") for x in file_names]
        assert (len(self.images) == len(self.masks))

    def __getitem__(self, index):
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is the image segmentation.
        """
        img = Image.open(self.images[index]).convert('RGB')
        target = Image.open(self.masks[index])

124
125
        if self.transforms is not None:
            img, target = self.transforms(img, target)
126
127
128
129
130
131
132

        return img, target

    def __len__(self):
        return len(self.images)


133
class VOCDetection(VisionDataset):
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    """`Pascal VOC <http://host.robots.ox.ac.uk/pascal/VOC/>`_ Detection Dataset.

    Args:
        root (string): Root directory of the VOC Dataset.
        year (string, optional): The dataset year, supports years 2007 to 2012.
        image_set (string, optional): Select the image_set to use, ``train``, ``trainval`` or ``val``
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
            (default: alphabetic indexing of VOC's 20 classes).
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, required): A function/transform that takes in the
            target and transforms it.
    """

    def __init__(self,
                 root,
                 year='2012',
                 image_set='train',
                 download=False,
                 transform=None,
156
157
158
                 target_transform=None,
                 transforms=None):
        super(VOCDetection, self).__init__(root, transforms, transform, target_transform)
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
        self.year = year
        self.url = DATASET_YEAR_DICT[year]['url']
        self.filename = DATASET_YEAR_DICT[year]['filename']
        self.md5 = DATASET_YEAR_DICT[year]['md5']
        self.image_set = image_set

        base_dir = DATASET_YEAR_DICT[year]['base_dir']
        voc_root = os.path.join(self.root, base_dir)
        image_dir = os.path.join(voc_root, 'JPEGImages')
        annotation_dir = os.path.join(voc_root, 'Annotations')

        if download:
            download_extract(self.url, self.root, self.filename, self.md5)

        if not os.path.isdir(voc_root):
            raise RuntimeError('Dataset not found or corrupted.' +
                               ' You can use download=True to download it')

        splits_dir = os.path.join(voc_root, 'ImageSets/Main')

        split_f = os.path.join(splits_dir, image_set.rstrip('\n') + '.txt')

        if not os.path.exists(split_f):
            raise ValueError(
                'Wrong image_set entered! Please use image_set="train" '
                'or image_set="trainval" or image_set="val" or a valid'
                'image_set from the VOC ImageSets/Main folder.')

        with open(os.path.join(split_f), "r") as f:
            file_names = [x.strip() for x in f.readlines()]

        self.images = [os.path.join(image_dir, x + ".jpg") for x in file_names]
        self.annotations = [os.path.join(annotation_dir, x + ".xml") for x in file_names]
        assert (len(self.images) == len(self.annotations))

    def __getitem__(self, index):
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is a dictionary of the XML tree.
        """
        img = Image.open(self.images[index]).convert('RGB')
        target = self.parse_voc_xml(
            ET.parse(self.annotations[index]).getroot())

206
207
        if self.transforms is not None:
            img, target = self.transforms(img, target)
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

        return img, target

    def __len__(self):
        return len(self.images)

    def parse_voc_xml(self, node):
        voc_dict = {}
        children = list(node)
        if children:
            def_dic = collections.defaultdict(list)
            for dc in map(self.parse_voc_xml, children):
                for ind, v in dc.items():
                    def_dic[ind].append(v)
            voc_dict = {
                node.tag:
224
225
                    {ind: v[0] if len(v) == 1 else v
                     for ind, v in def_dic.items()}
226
227
228
229
230
231
232
233
234
235
236
237
            }
        if node.text:
            text = node.text.strip()
            if not children:
                voc_dict[node.tag] = text
        return voc_dict


def download_extract(url, root, filename, md5):
    download_url(url, root, filename, md5)
    with tarfile.open(os.path.join(root, filename), "r") as tar:
        tar.extractall(path=root)