utils.py 11.8 KB
Newer Older
1
from typing import Union, Optional, List, Tuple, Text, BinaryIO
2
import pathlib
3
4
import torch
import math
5
import warnings
6
import numpy as np
7
from PIL import Image, ImageDraw, ImageFont, ImageColor
8

9
__all__ = ["make_grid", "save_image", "draw_bounding_boxes", "draw_segmentation_masks"]
10

11

12
@torch.no_grad()
13
def make_grid(
14
    tensor: Union[torch.Tensor, List[torch.Tensor]],
15
16
17
    nrow: int = 8,
    padding: int = 2,
    normalize: bool = False,
18
    value_range: Optional[Tuple[int, int]] = None,
19
20
    scale_each: bool = False,
    pad_value: int = 0,
21
    **kwargs
22
) -> torch.Tensor:
23
24
    """
    Make a grid of images.
25

26
27
28
    Args:
        tensor (Tensor or list): 4D mini-batch Tensor of shape (B x C x H x W)
            or a list of images all of the same size.
29
        nrow (int, optional): Number of images displayed in each row of the grid.
Tongzhou Wang's avatar
Tongzhou Wang committed
30
31
            The final grid size is ``(B / nrow, nrow)``. Default: ``8``.
        padding (int, optional): amount of padding. Default: ``2``.
32
        normalize (bool, optional): If True, shift the image to the range (0, 1),
Tongzhou Wang's avatar
Tongzhou Wang committed
33
            by the min and max values specified by :attr:`range`. Default: ``False``.
34
        value_range (tuple, optional): tuple (min, max) where min and max are numbers,
35
36
            then these numbers are used to normalize the image. By default, min and max
            are computed from the tensor.
Tongzhou Wang's avatar
Tongzhou Wang committed
37
38
39
        scale_each (bool, optional): If ``True``, scale each image in the batch of
            images separately rather than the (min, max) over all images. Default: ``False``.
        pad_value (float, optional): Value for the padded pixels. Default: ``0``.
40

41
42
    Returns:
        grid (Tensor): the tensor containing grid of images.
43
    """
44
45
    if not (torch.is_tensor(tensor) or
            (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
46
47
48
49
50
51
        raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')

    if "range" in kwargs.keys():
        warning = "range will be deprecated, please use value_range instead."
        warnings.warn(warning)
        value_range = kwargs["range"]
52

53
    # if list of tensors, convert to a 4D mini-batch Tensor
54
    if isinstance(tensor, list):
55
        tensor = torch.stack(tensor, dim=0)
56

57
    if tensor.dim() == 2:  # single image H x W
58
        tensor = tensor.unsqueeze(0)
59
    if tensor.dim() == 3:  # single image
60
        if tensor.size(0) == 1:  # if single-channel, convert to 3-channel
Adam Lerer's avatar
Adam Lerer committed
61
            tensor = torch.cat((tensor, tensor, tensor), 0)
62
        tensor = tensor.unsqueeze(0)
63

64
    if tensor.dim() == 4 and tensor.size(1) == 1:  # single-channel images
65
        tensor = torch.cat((tensor, tensor, tensor), 1)
66
67

    if normalize is True:
68
        tensor = tensor.clone()  # avoid modifying tensor in-place
69
70
71
        if value_range is not None:
            assert isinstance(value_range, tuple), \
                "value_range has to be a tuple (min, max) if specified. min and max are numbers"
72

73
74
75
        def norm_ip(img, low, high):
            img.clamp_(min=low, max=high)
            img.sub_(low).div_(max(high - low, 1e-5))
76

77
78
79
        def norm_range(t, value_range):
            if value_range is not None:
                norm_ip(t, value_range[0], value_range[1])
80
            else:
81
                norm_ip(t, float(t.min()), float(t.max()))
82
83
84

        if scale_each is True:
            for t in tensor:  # loop over mini-batch dimension
85
                norm_range(t, value_range)
86
        else:
87
            norm_range(tensor, value_range)
88

89
    if tensor.size(0) == 1:
90
        return tensor.squeeze(0)
91

92
93
94
    # make the mini-batch of images into a grid
    nmaps = tensor.size(0)
    xmaps = min(nrow, nmaps)
95
    ymaps = int(math.ceil(float(nmaps) / xmaps))
96
    height, width = int(tensor.size(2) + padding), int(tensor.size(3) + padding)
97
98
    num_channels = tensor.size(1)
    grid = tensor.new_full((num_channels, height * ymaps + padding, width * xmaps + padding), pad_value)
99
    k = 0
100
101
    for y in range(ymaps):
        for x in range(xmaps):
102
103
            if k >= nmaps:
                break
104
105
106
107
108
            # Tensor.copy_() is a valid method but seems to be missing from the stubs
            # https://pytorch.org/docs/stable/tensors.html#torch.Tensor.copy_
            grid.narrow(1, y * height + padding, height - padding).narrow(  # type: ignore[attr-defined]
                2, x * width + padding, width - padding
            ).copy_(tensor[k])
109
110
111
112
            k = k + 1
    return grid


113
@torch.no_grad()
114
def save_image(
115
    tensor: Union[torch.Tensor, List[torch.Tensor]],
116
117
    fp: Union[Text, pathlib.Path, BinaryIO],
    format: Optional[str] = None,
118
    **kwargs
119
) -> None:
120
121
    """
    Save a given Tensor into an image file.
122
123
124
125

    Args:
        tensor (Tensor or list): Image to be saved. If given a mini-batch tensor,
            saves the tensor as a grid of images by calling ``make_grid``.
126
        fp (string or file object): A filename or a file object
127
128
        format(Optional):  If omitted, the format to use is determined from the filename extension.
            If a file object was used instead of a filename, this parameter should always be used.
129
        **kwargs: Other arguments are documented in ``make_grid``.
130
    """
131
132

    grid = make_grid(tensor, **kwargs)
133
    # Add 0.5 after unnormalizing to [0, 255] to round to nearest integer
134
    ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to('cpu', torch.uint8).numpy()
135
    im = Image.fromarray(ndarr)
136
    im.save(fp, format=format)
137
138
139
140
141
142
143
144


@torch.no_grad()
def draw_bounding_boxes(
    image: torch.Tensor,
    boxes: torch.Tensor,
    labels: Optional[List[str]] = None,
    colors: Optional[List[Union[str, Tuple[int, int, int]]]] = None,
145
    fill: Optional[bool] = False,
146
147
148
149
150
151
152
153
    width: int = 1,
    font: Optional[str] = None,
    font_size: int = 10
) -> torch.Tensor:

    """
    Draws bounding boxes on given image.
    The values of the input image should be uint8 between 0 and 255.
154
    If fill is True, Resulting Tensor should be saved as PNG image.
155
156

    Args:
157
        image (Tensor): Tensor of shape (C x H x W) and dtype uint8.
158
        boxes (Tensor): Tensor of size (N, 4) containing bounding boxes in (xmin, ymin, xmax, ymax) format. Note that
159
160
161
162
163
            the boxes are absolute coordinates with respect to the image. In other words: `0 <= xmin < xmax < W` and
            `0 <= ymin < ymax < H`.
        labels (List[str]): List containing the labels of bounding boxes.
        colors (List[Union[str, Tuple[int, int, int]]]): List containing the colors of bounding boxes. The colors can
            be represented as `str` or `Tuple[int, int, int]`.
164
        fill (bool): If `True` fills the bounding box with specified color.
165
166
167
168
169
        width (int): Width of bounding box.
        font (str): A filename containing a TrueType font. If the file is not found in this filename, the loader may
            also search in other directories, such as the `fonts/` directory on Windows or `/Library/Fonts/`,
            `/System/Library/Fonts/` and `~/Library/Fonts/` on macOS.
        font_size (int): The requested font size in points.
170
171
172

    Returns:
        img (Tensor[C, H, W]): Image Tensor of dtype uint8 with bounding boxes plotted.
173
174
175
176
177
178
179
180
181
182
183
184
185
186
    """

    if not isinstance(image, torch.Tensor):
        raise TypeError(f"Tensor expected, got {type(image)}")
    elif image.dtype != torch.uint8:
        raise ValueError(f"Tensor uint8 expected, got {image.dtype}")
    elif image.dim() != 3:
        raise ValueError("Pass individual images, not batches")

    ndarr = image.permute(1, 2, 0).numpy()
    img_to_draw = Image.fromarray(ndarr)

    img_boxes = boxes.to(torch.int64).tolist()

187
188
189
190
191
192
    if fill:
        draw = ImageDraw.Draw(img_to_draw, "RGBA")

    else:
        draw = ImageDraw.Draw(img_to_draw)

193
    txt_font = ImageFont.load_default() if font is None else ImageFont.truetype(font=font, size=font_size)
194
195

    for i, bbox in enumerate(img_boxes):
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
        if colors is None:
            color = None
        else:
            color = colors[i]

        if fill:
            if color is None:
                fill_color = (255, 255, 255, 100)
            elif isinstance(color, str):
                # This will automatically raise Error if rgb cannot be parsed.
                fill_color = ImageColor.getrgb(color) + (100,)
            elif isinstance(color, tuple):
                fill_color = color + (100,)
            draw.rectangle(bbox, width=width, outline=color, fill=fill_color)
        else:
            draw.rectangle(bbox, width=width, outline=color)
212
213

        if labels is not None:
214
215
            margin = width + 1
            draw.text((bbox[0] + margin, bbox[1] + margin), labels[i], fill=color, font=txt_font)
216

217
    return torch.from_numpy(np.array(img_to_draw)).permute(2, 0, 1).to(dtype=torch.uint8)
218
219
220
221
222
223


@torch.no_grad()
def draw_segmentation_masks(
    image: torch.Tensor,
    masks: torch.Tensor,
224
    alpha: float = 0.8,
225
226
227
228
229
230
231
232
    colors: Optional[List[Union[str, Tuple[int, int, int]]]] = None,
) -> torch.Tensor:

    """
    Draws segmentation masks on given RGB image.
    The values of the input image should be uint8 between 0 and 255.

    Args:
233
234
235
236
237
238
239
240
        image (Tensor): Tensor of shape (3, H, W) and dtype uint8.
        masks (Tensor): Tensor of shape (num_masks, H, W) or (H, W) and dtype bool.
        alpha (float): Float number between 0 and 1 denoting the transparency of the masks.
            0 means full transparency, 1 means no transparency.
        colors (list or None): List containing the colors of the masks. The colors can
            be represented as PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
            When ``masks`` has a single entry of shape (H, W), you can pass a single color instead of a list
            with one element. By default, random colors are generated for each mask.
241
242

    Returns:
243
        img (Tensor[C, H, W]): Image Tensor, with segmentation masks drawn on top.
244
245
246
    """

    if not isinstance(image, torch.Tensor):
247
        raise TypeError(f"The image must be a tensor, got {type(image)}")
248
    elif image.dtype != torch.uint8:
249
        raise ValueError(f"The image dtype must be uint8, got {image.dtype}")
250
251
252
253
    elif image.dim() != 3:
        raise ValueError("Pass individual images, not batches")
    elif image.size()[0] != 3:
        raise ValueError("Pass an RGB image. Other Image formats are not supported")
254
255
256
257
258
259
260
261
    if masks.ndim == 2:
        masks = masks[None, :, :]
    if masks.ndim != 3:
        raise ValueError("masks must be of shape (H, W) or (batch_size, H, W)")
    if masks.dtype != torch.bool:
        raise ValueError(f"The masks must be of dtype bool. Got {masks.dtype}")
    if masks.shape[-2:] != image.shape[-2:]:
        raise ValueError("The image and the masks must have the same height and width")
262
263

    num_masks = masks.size()[0]
264
265
    if colors is not None and num_masks > len(colors):
        raise ValueError(f"There are more masks ({num_masks}) than colors ({len(colors)})")
266
267

    if colors is None:
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        colors = _generate_color_palette(num_masks)

    if not isinstance(colors, list):
        colors = [colors]
    if not isinstance(colors[0], (tuple, str)):
        raise ValueError("colors must be a tuple or a string, or a list thereof")
    if isinstance(colors[0], tuple) and len(colors[0]) != 3:
        raise ValueError("It seems that you passed a tuple of colors instead of a list of colors")

    out_dtype = torch.uint8

    colors_ = []
    for color in colors:
        if isinstance(color, str):
            color = ImageColor.getrgb(color)
        color = torch.tensor(color, dtype=out_dtype)
        colors_.append(color)
285

286
287
288
289
    img_to_draw = image.detach().clone()
    # TODO: There might be a way to vectorize this
    for mask, color in zip(masks, colors_):
        img_to_draw[:, mask] = color[:, None]
290

291
292
    out = image * (1 - alpha) + img_to_draw * alpha
    return out.to(out_dtype)
293
294


295
296
297
def _generate_color_palette(num_masks):
    palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
    return [tuple((i * palette) % 255) for i in range(num_masks)]