mvit.py 19.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
import math
from dataclasses import dataclass
from functools import partial
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple

import torch
import torch.fx
import torch.nn as nn

10
from ...ops import MLP, StochasticDepth
11
12
from ...transforms._presets import VideoClassification
from ...utils import _log_api_usage_once
13
from .._api import register_model, Weights, WeightsEnum
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
from .._meta import _KINETICS400_CATEGORIES
from .._utils import _ovewrite_named_param


__all__ = [
    "MViT",
    "MViT_V1_B_Weights",
    "mvit_v1_b",
]


# TODO: Consider handle 2d input if Temporal is 1


@dataclass
class MSBlockConfig:
    num_heads: int
    input_channels: int
    output_channels: int
    kernel_q: List[int]
    kernel_kv: List[int]
    stride_q: List[int]
    stride_kv: List[int]


def _prod(s: Sequence[int]) -> int:
    product = 1
    for v in s:
        product *= v
    return product


def _unsqueeze(x: torch.Tensor, target_dim: int, expand_dim: int) -> Tuple[torch.Tensor, int]:
    tensor_dim = x.dim()
    if tensor_dim == target_dim - 1:
        x = x.unsqueeze(expand_dim)
    elif tensor_dim != target_dim:
        raise ValueError(f"Unsupported input dimension {x.shape}")
    return x, tensor_dim


def _squeeze(x: torch.Tensor, target_dim: int, expand_dim: int, tensor_dim: int) -> torch.Tensor:
    if tensor_dim == target_dim - 1:
        x = x.squeeze(expand_dim)
    return x


torch.fx.wrap("_unsqueeze")
torch.fx.wrap("_squeeze")


class Pool(nn.Module):
    def __init__(
        self,
        pool: nn.Module,
        norm: Optional[nn.Module],
        activation: Optional[nn.Module] = None,
        norm_before_pool: bool = False,
    ) -> None:
        super().__init__()
        self.pool = pool
        layers = []
        if norm is not None:
            layers.append(norm)
        if activation is not None:
            layers.append(activation)
        self.norm_act = nn.Sequential(*layers) if layers else None
        self.norm_before_pool = norm_before_pool

    def forward(self, x: torch.Tensor, thw: Tuple[int, int, int]) -> Tuple[torch.Tensor, Tuple[int, int, int]]:
        x, tensor_dim = _unsqueeze(x, 4, 1)

        # Separate the class token and reshape the input
        class_token, x = torch.tensor_split(x, indices=(1,), dim=2)
        x = x.transpose(2, 3)
        B, N, C = x.shape[:3]
        x = x.reshape((B * N, C) + thw).contiguous()

        # normalizing prior pooling is useful when we use BN which can be absorbed to speed up inference
        if self.norm_before_pool and self.norm_act is not None:
            x = self.norm_act(x)

        # apply the pool on the input and add back the token
        x = self.pool(x)
        T, H, W = x.shape[2:]
        x = x.reshape(B, N, C, -1).transpose(2, 3)
        x = torch.cat((class_token, x), dim=2)

        if not self.norm_before_pool and self.norm_act is not None:
            x = self.norm_act(x)

        x = _squeeze(x, 4, 1, tensor_dim)
        return x, (T, H, W)


class MultiscaleAttention(nn.Module):
    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        kernel_q: List[int],
        kernel_kv: List[int],
        stride_q: List[int],
        stride_kv: List[int],
        residual_pool: bool,
        dropout: float = 0.0,
        norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
    ) -> None:
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.head_dim = embed_dim // num_heads
        self.scaler = 1.0 / math.sqrt(self.head_dim)
        self.residual_pool = residual_pool

        self.qkv = nn.Linear(embed_dim, 3 * embed_dim)
        layers: List[nn.Module] = [nn.Linear(embed_dim, embed_dim)]
        if dropout > 0.0:
            layers.append(nn.Dropout(dropout, inplace=True))
        self.project = nn.Sequential(*layers)

        self.pool_q: Optional[nn.Module] = None
        if _prod(kernel_q) > 1 or _prod(stride_q) > 1:
            padding_q = [int(q // 2) for q in kernel_q]
            self.pool_q = Pool(
                nn.Conv3d(
                    self.head_dim,
                    self.head_dim,
                    kernel_q,  # type: ignore[arg-type]
                    stride=stride_q,  # type: ignore[arg-type]
                    padding=padding_q,  # type: ignore[arg-type]
                    groups=self.head_dim,
                    bias=False,
                ),
                norm_layer(self.head_dim),
            )

        self.pool_k: Optional[nn.Module] = None
        self.pool_v: Optional[nn.Module] = None
        if _prod(kernel_kv) > 1 or _prod(stride_kv) > 1:
            padding_kv = [int(kv // 2) for kv in kernel_kv]
            self.pool_k = Pool(
                nn.Conv3d(
                    self.head_dim,
                    self.head_dim,
                    kernel_kv,  # type: ignore[arg-type]
                    stride=stride_kv,  # type: ignore[arg-type]
                    padding=padding_kv,  # type: ignore[arg-type]
                    groups=self.head_dim,
                    bias=False,
                ),
                norm_layer(self.head_dim),
            )
            self.pool_v = Pool(
                nn.Conv3d(
                    self.head_dim,
                    self.head_dim,
                    kernel_kv,  # type: ignore[arg-type]
                    stride=stride_kv,  # type: ignore[arg-type]
                    padding=padding_kv,  # type: ignore[arg-type]
                    groups=self.head_dim,
                    bias=False,
                ),
                norm_layer(self.head_dim),
            )

    def forward(self, x: torch.Tensor, thw: Tuple[int, int, int]) -> Tuple[torch.Tensor, Tuple[int, int, int]]:
        B, N, C = x.shape
        q, k, v = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).transpose(1, 3).unbind(dim=2)

        if self.pool_k is not None:
            k = self.pool_k(k, thw)[0]
        if self.pool_v is not None:
            v = self.pool_v(v, thw)[0]
        if self.pool_q is not None:
            q, thw = self.pool_q(q, thw)

        attn = torch.matmul(self.scaler * q, k.transpose(2, 3))
        attn = attn.softmax(dim=-1)

        x = torch.matmul(attn, v)
        if self.residual_pool:
            x.add_(q)
        x = x.transpose(1, 2).reshape(B, -1, C)
        x = self.project(x)

        return x, thw


class MultiscaleBlock(nn.Module):
    def __init__(
        self,
        cnf: MSBlockConfig,
        residual_pool: bool,
        dropout: float = 0.0,
        stochastic_depth_prob: float = 0.0,
        norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
    ) -> None:
        super().__init__()

        self.pool_skip: Optional[nn.Module] = None
        if _prod(cnf.stride_q) > 1:
            kernel_skip = [s + 1 if s > 1 else s for s in cnf.stride_q]
            padding_skip = [int(k // 2) for k in kernel_skip]
            self.pool_skip = Pool(
                nn.MaxPool3d(kernel_skip, stride=cnf.stride_q, padding=padding_skip), None  # type: ignore[arg-type]
            )

        self.norm1 = norm_layer(cnf.input_channels)
        self.norm2 = norm_layer(cnf.input_channels)
        self.needs_transposal = isinstance(self.norm1, nn.BatchNorm1d)

        self.attn = MultiscaleAttention(
            cnf.input_channels,
            cnf.num_heads,
            kernel_q=cnf.kernel_q,
            kernel_kv=cnf.kernel_kv,
            stride_q=cnf.stride_q,
            stride_kv=cnf.stride_kv,
            residual_pool=residual_pool,
            dropout=dropout,
            norm_layer=norm_layer,
        )
        self.mlp = MLP(
            cnf.input_channels,
            [4 * cnf.input_channels, cnf.output_channels],
            activation_layer=nn.GELU,
            dropout=dropout,
            inplace=None,
        )

        self.stochastic_depth = StochasticDepth(stochastic_depth_prob, "row")

        self.project: Optional[nn.Module] = None
        if cnf.input_channels != cnf.output_channels:
            self.project = nn.Linear(cnf.input_channels, cnf.output_channels)

    def forward(self, x: torch.Tensor, thw: Tuple[int, int, int]) -> Tuple[torch.Tensor, Tuple[int, int, int]]:
        x_skip = x if self.pool_skip is None else self.pool_skip(x, thw)[0]

        x = self.norm1(x.transpose(1, 2)).transpose(1, 2) if self.needs_transposal else self.norm1(x)
        x, thw = self.attn(x, thw)
        x = x_skip + self.stochastic_depth(x)

        x_norm = self.norm2(x.transpose(1, 2)).transpose(1, 2) if self.needs_transposal else self.norm2(x)
        x_proj = x if self.project is None else self.project(x_norm)

        return x_proj + self.stochastic_depth(self.mlp(x_norm)), thw


class PositionalEncoding(nn.Module):
    def __init__(self, embed_size: int, spatial_size: Tuple[int, int], temporal_size: int) -> None:
        super().__init__()
        self.spatial_size = spatial_size
        self.temporal_size = temporal_size

        self.class_token = nn.Parameter(torch.zeros(embed_size))
        self.spatial_pos = nn.Parameter(torch.zeros(self.spatial_size[0] * self.spatial_size[1], embed_size))
        self.temporal_pos = nn.Parameter(torch.zeros(self.temporal_size, embed_size))
        self.class_pos = nn.Parameter(torch.zeros(embed_size))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        hw_size, embed_size = self.spatial_pos.shape
        pos_embedding = torch.repeat_interleave(self.temporal_pos, hw_size, dim=0)
        pos_embedding.add_(self.spatial_pos.unsqueeze(0).expand(self.temporal_size, -1, -1).reshape(-1, embed_size))
        pos_embedding = torch.cat((self.class_pos.unsqueeze(0), pos_embedding), dim=0).unsqueeze(0)
        class_token = self.class_token.expand(x.size(0), -1).unsqueeze(1)
        return torch.cat((class_token, x), dim=1).add_(pos_embedding)


class MViT(nn.Module):
    def __init__(
        self,
        spatial_size: Tuple[int, int],
        temporal_size: int,
        block_setting: Sequence[MSBlockConfig],
        residual_pool: bool,
        dropout: float = 0.5,
        attention_dropout: float = 0.0,
        stochastic_depth_prob: float = 0.0,
        num_classes: int = 400,
        block: Optional[Callable[..., nn.Module]] = None,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        """
        MViT main class.

        Args:
            spatial_size (tuple of ints): The spacial size of the input as ``(H, W)``.
            temporal_size (int): The temporal size ``T`` of the input.
            block_setting (sequence of MSBlockConfig): The Network structure.
            residual_pool (bool): If True, use MViTv2 pooling residual connection.
            dropout (float): Dropout rate. Default: 0.0.
            attention_dropout (float): Attention dropout rate. Default: 0.0.
            stochastic_depth_prob: (float): Stochastic depth rate. Default: 0.0.
            num_classes (int): The number of classes.
            block (callable, optional): Module specifying the layer which consists of the attention and mlp.
            norm_layer (callable, optional): Module specifying the normalization layer to use.
        """
        super().__init__()
        # This implementation employs a different parameterization scheme than the one used at PyTorch Video:
        # https://github.com/facebookresearch/pytorchvideo/blob/718d0a4/pytorchvideo/models/vision_transformers.py
        # We remove any experimental configuration that didn't make it to the final variants of the models. To represent
        # the configuration of the architecture we use the simplified form suggested at Table 1 of the paper.
        _log_api_usage_once(self)
        total_stage_blocks = len(block_setting)
        if total_stage_blocks == 0:
            raise ValueError("The configuration parameter can't be empty.")

        if block is None:
            block = MultiscaleBlock

        if norm_layer is None:
            norm_layer = partial(nn.LayerNorm, eps=1e-6)

        # Patch Embedding module
        self.conv_proj = nn.Conv3d(
            in_channels=3,
            out_channels=block_setting[0].input_channels,
            kernel_size=(3, 7, 7),
            stride=(2, 4, 4),
            padding=(1, 3, 3),
        )

        # Spatio-Temporal Class Positional Encoding
        self.pos_encoding = PositionalEncoding(
            embed_size=block_setting[0].input_channels,
            spatial_size=(spatial_size[0] // self.conv_proj.stride[1], spatial_size[1] // self.conv_proj.stride[2]),
            temporal_size=temporal_size // self.conv_proj.stride[0],
        )

        # Encoder module
        self.blocks = nn.ModuleList()
        for stage_block_id, cnf in enumerate(block_setting):
            # adjust stochastic depth probability based on the depth of the stage block
            sd_prob = stochastic_depth_prob * stage_block_id / (total_stage_blocks - 1.0)

            self.blocks.append(
                block(
                    cnf=cnf,
                    residual_pool=residual_pool,
                    dropout=attention_dropout,
                    stochastic_depth_prob=sd_prob,
                    norm_layer=norm_layer,
                )
            )
        self.norm = norm_layer(block_setting[-1].output_channels)

        # Classifier module
        self.head = nn.Sequential(
            nn.Dropout(dropout, inplace=True),
            nn.Linear(block_setting[-1].output_channels, num_classes),
        )

        for m in self.modules():
            if isinstance(m, nn.Linear):
                nn.init.trunc_normal_(m.weight, std=0.02)
                if isinstance(m, nn.Linear) and m.bias is not None:
                    nn.init.constant_(m.bias, 0.0)
            elif isinstance(m, nn.LayerNorm):
                if m.weight is not None:
                    nn.init.constant_(m.weight, 1.0)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0.0)
            elif isinstance(m, PositionalEncoding):
                for weights in m.parameters():
                    nn.init.trunc_normal_(weights, std=0.02)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # patchify and reshape: (B, C, T, H, W) -> (B, embed_channels[0], T', H', W') -> (B, THW', embed_channels[0])
        x = self.conv_proj(x)
        x = x.flatten(2).transpose(1, 2)

        # add positional encoding
        x = self.pos_encoding(x)

        # pass patches through the encoder
        thw = (self.pos_encoding.temporal_size,) + self.pos_encoding.spatial_size
        for block in self.blocks:
            x, thw = block(x, thw)
        x = self.norm(x)

        # classifier "token" as used by standard language architectures
        x = x[:, 0]
        x = self.head(x)

        return x


def _mvit(
    block_setting: List[MSBlockConfig],
    stochastic_depth_prob: float,
    weights: Optional[WeightsEnum],
    progress: bool,
    **kwargs: Any,
) -> MViT:
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
        assert weights.meta["min_size"][0] == weights.meta["min_size"][1]
        _ovewrite_named_param(kwargs, "spatial_size", weights.meta["min_size"])
        _ovewrite_named_param(kwargs, "temporal_size", weights.meta["min_temporal_size"])
    spatial_size = kwargs.pop("spatial_size", (224, 224))
    temporal_size = kwargs.pop("temporal_size", 16)

    model = MViT(
        spatial_size=spatial_size,
        temporal_size=temporal_size,
        block_setting=block_setting,
        residual_pool=kwargs.pop("residual_pool", False),
        stochastic_depth_prob=stochastic_depth_prob,
        **kwargs,
    )

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))

    return model


class MViT_V1_B_Weights(WeightsEnum):
    KINETICS400_V1 = Weights(
        url="https://download.pytorch.org/models/mvit_v1_b-dbeb1030.pth",
        transforms=partial(
            VideoClassification,
            crop_size=(224, 224),
            resize_size=(256,),
            mean=(0.45, 0.45, 0.45),
            std=(0.225, 0.225, 0.225),
        ),
        meta={
            "min_size": (224, 224),
            "min_temporal_size": 16,
            "categories": _KINETICS400_CATEGORIES,
            "recipe": "https://github.com/facebookresearch/pytorchvideo/blob/main/docs/source/model_zoo.md",
448
449
450
451
            "_docs": (
                "The weights were ported from the paper. The accuracies are estimated on video-level "
                "with parameters `frame_rate=7.5`, `clips_per_video=5`, and `clip_len=16`"
            ),
452
453
454
            "num_params": 36610672,
            "_metrics": {
                "Kinetics-400": {
455
456
                    "acc@1": 78.477,
                    "acc@5": 93.582,
457
458
459
460
461
462
463
                }
            },
        },
    )
    DEFAULT = KINETICS400_V1


464
@register_model()
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
def mvit_v1_b(*, weights: Optional[MViT_V1_B_Weights] = None, progress: bool = True, **kwargs: Any) -> MViT:
    """
    Constructs a base MViTV1 architecture from
    `Multiscale Vision Transformers <https://arxiv.org/abs/2104.11227>`__.

    Args:
        weights (:class:`~torchvision.models.video.MViT_V1_B_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.video.MViT_V1_B_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.video.MViT``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/video/mvit.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.video.MViT_V1_B_Weights
        :members:
    """
    weights = MViT_V1_B_Weights.verify(weights)

    config: Dict[str, List] = {
        "num_heads": [1, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8],
        "input_channels": [96, 192, 192, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 768, 768],
        "output_channels": [192, 192, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 768, 768, 768],
        "kernel_q": [[], [3, 3, 3], [], [3, 3, 3], [], [], [], [], [], [], [], [], [], [], [3, 3, 3], []],
        "kernel_kv": [
            [3, 3, 3],
            [3, 3, 3],
            [3, 3, 3],
            [3, 3, 3],
            [3, 3, 3],
            [3, 3, 3],
            [3, 3, 3],
            [3, 3, 3],
            [3, 3, 3],
            [3, 3, 3],
            [3, 3, 3],
            [3, 3, 3],
            [3, 3, 3],
            [3, 3, 3],
            [3, 3, 3],
            [3, 3, 3],
        ],
        "stride_q": [[], [1, 2, 2], [], [1, 2, 2], [], [], [], [], [], [], [], [], [], [], [1, 2, 2], []],
        "stride_kv": [
            [1, 8, 8],
            [1, 4, 4],
            [1, 4, 4],
            [1, 2, 2],
            [1, 2, 2],
            [1, 2, 2],
            [1, 2, 2],
            [1, 2, 2],
            [1, 2, 2],
            [1, 2, 2],
            [1, 2, 2],
            [1, 2, 2],
            [1, 2, 2],
            [1, 2, 2],
            [1, 1, 1],
            [1, 1, 1],
        ],
    }

    block_setting = []
    for i in range(len(config["num_heads"])):
        block_setting.append(
            MSBlockConfig(
                num_heads=config["num_heads"][i],
                input_channels=config["input_channels"][i],
                output_channels=config["output_channels"][i],
                kernel_q=config["kernel_q"][i],
                kernel_kv=config["kernel_kv"][i],
                stride_q=config["stride_q"][i],
                stride_kv=config["stride_kv"][i],
            )
        )

    return _mvit(
        spatial_size=(224, 224),
        temporal_size=16,
        block_setting=block_setting,
        residual_pool=False,
        stochastic_depth_prob=kwargs.pop("stochastic_depth_prob", 0.2),
        weights=weights,
        progress=progress,
        **kwargs,
    )