cascade_evaluation.py 11.6 KB
Newer Older
Ponku's avatar
Ponku committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import os
import warnings

import torch
import torchvision
import torchvision.prototype.models.depth.stereo
import utils
from torch.nn import functional as F
from train import make_eval_loader

from utils.metrics import AVAILABLE_METRICS
from vizualization import make_prediction_image_side_to_side


def get_args_parser(add_help=True):
    import argparse

    parser = argparse.ArgumentParser(description="PyTorch Stereo Matching Evaluation", add_help=add_help)
    parser.add_argument("--dataset", type=str, default="middlebury2014-train", help="dataset to use")
    parser.add_argument("--dataset-root", type=str, default="", help="root of the dataset")

    parser.add_argument("--checkpoint", type=str, default="", help="path to weights")
    parser.add_argument("--weights", type=str, default=None, help="torchvision API weight")
    parser.add_argument(
        "--model",
        type=str,
        default="crestereo_base",
        help="which model to use if not speciffying a training checkpoint",
    )
    parser.add_argument("--img-folder", type=str, default="images")

    parser.add_argument("--batch-size", type=int, default=1, help="batch size")
    parser.add_argument("--workers", type=int, default=0, help="number of workers")

    parser.add_argument("--eval-size", type=int, nargs="+", default=[384, 512], help="resize size")
    parser.add_argument(
        "--norm-mean", type=float, nargs="+", default=[0.5, 0.5, 0.5], help="mean for image normalization"
    )
    parser.add_argument(
        "--norm-std", type=float, nargs="+", default=[0.5, 0.5, 0.5], help="std for image normalization"
    )
    parser.add_argument(
        "--use-grayscale", action="store_true", help="use grayscale images instead of RGB", default=False
    )
    parser.add_argument("--max-disparity", type=float, default=None, help="maximum disparity")
    parser.add_argument(
        "--interpolation-strategy",
        type=str,
        default="bilinear",
        help="interpolation strategy",
        choices=["bilinear", "bicubic", "mixed"],
    )

    parser.add_argument("--n_iterations", nargs="+", type=int, default=[10], help="number of recurent iterations")
    parser.add_argument("--n_cascades", nargs="+", type=int, default=[1], help="number of cascades")
    parser.add_argument(
        "--metrics",
        type=str,
        nargs="+",
        default=["mae", "rmse", "1px", "3px", "5px", "relepe"],
        help="metrics to log",
        choices=AVAILABLE_METRICS,
    )
    parser.add_argument("--mixed-precision", action="store_true", help="use mixed precision training")

    parser.add_argument("--world-size", type=int, default=1, help="number of distributed processes")
    parser.add_argument("--dist-url", type=str, default="env://", help="url used to set up distributed training")
    parser.add_argument("--device", type=str, default="cuda", help="device to use for training")

    parser.add_argument("--save-images", action="store_true", help="save images of the predictions")
    parser.add_argument("--padder-type", type=str, default="kitti", help="padder type", choices=["kitti", "sintel"])

    return parser


def cascade_inference(model, image_left, image_right, iterations, cascades):
    # check that image size is divisible by 16 * (2 ** (cascades - 1))
    for image in [image_left, image_right]:
        if image.shape[-2] % ((2 ** (cascades - 1))) != 0:
            raise ValueError(
                f"image height is not divisible by {16 * (2 ** (cascades - 1))}. Image shape: {image.shape[-2]}"
            )

        if image.shape[-1] % ((2 ** (cascades - 1))) != 0:
            raise ValueError(
                f"image width is not divisible by {16 * (2 ** (cascades - 1))}. Image shape: {image.shape[-2]}"
            )

    left_image_pyramid = [image_left]
    right_image_pyramid = [image_right]
    for idx in range(0, cascades - 1):
        ds_factor = int(2 ** (idx + 1))
        ds_shape = (image_left.shape[-2] // ds_factor, image_left.shape[-1] // ds_factor)
        left_image_pyramid += F.interpolate(image_left, size=ds_shape, mode="bilinear", align_corners=True).unsqueeze(0)
        right_image_pyramid += F.interpolate(image_right, size=ds_shape, mode="bilinear", align_corners=True).unsqueeze(
            0
        )

    flow_init = None
    for left_image, right_image in zip(reversed(left_image_pyramid), reversed(right_image_pyramid)):
        flow_pred = model(left_image, right_image, flow_init, num_iters=iterations)
        # flow pred is a list
        flow_init = flow_pred[-1]

    return flow_init


@torch.inference_mode()
def _evaluate(
    model,
    args,
    val_loader,
    *,
    padder_mode,
    print_freq=10,
    writter=None,
    step=None,
    iterations=10,
    cascades=1,
    batch_size=None,
    header=None,
    save_images=False,
    save_path="",
):
    """Helper function to compute various metrics (epe, etc.) for a model on a given dataset.
    We process as many samples as possible with ddp.
    """
    model.eval()
    header = header or "Test:"
    device = torch.device(args.device)
    metric_logger = utils.MetricLogger(delimiter="  ")

    iterations = iterations or args.recurrent_updates

    logger = utils.MetricLogger()
    for meter_name in args.metrics:
        logger.add_meter(meter_name, fmt="{global_avg:.4f}")
    if "fl-all" not in args.metrics:
        logger.add_meter("fl-all", fmt="{global_avg:.4f}")

    num_processed_samples = 0
    with torch.cuda.amp.autocast(enabled=args.mixed_precision, dtype=torch.float16):
        batch_idx = 0
        for blob in metric_logger.log_every(val_loader, print_freq, header):
            image_left, image_right, disp_gt, valid_disp_mask = (x.to(device) for x in blob)
            padder = utils.InputPadder(image_left.shape, mode=padder_mode)
            image_left, image_right = padder.pad(image_left, image_right)

            disp_pred = cascade_inference(model, image_left, image_right, iterations, cascades)
            disp_pred = disp_pred[:, :1, :, :]
            disp_pred = padder.unpad(disp_pred)

            if save_images:
                if args.distributed:
                    rank_prefix = args.rank
                else:
                    rank_prefix = 0
                make_prediction_image_side_to_side(
                    disp_pred, disp_gt, valid_disp_mask, save_path, prefix=f"batch_{rank_prefix}_{batch_idx}"
                )

            metrics, _ = utils.compute_metrics(disp_pred, disp_gt, valid_disp_mask, metrics=logger.meters.keys())
            num_processed_samples += image_left.shape[0]
            for name in metrics:
                logger.meters[name].update(metrics[name], n=1)

            batch_idx += 1

    num_processed_samples = utils.reduce_across_processes(num_processed_samples) / args.world_size

    print("Num_processed_samples: ", num_processed_samples)
    if (
        hasattr(val_loader.dataset, "__len__")
        and len(val_loader.dataset) != num_processed_samples
        and torch.distributed.get_rank() == 0
    ):
        warnings.warn(
            f"Number of processed samples {num_processed_samples} is different"
            f"from the dataset size {len(val_loader.dataset)}. This may happen if"
            "the dataset is not divisible by the batch size. Try lowering the batch size for more accurate results."
        )

    if writter is not None and args.rank == 0:
        for meter_name, meter_value in logger.meters.items():
            scalar_name = f"{meter_name} {header}"
            writter.add_scalar(scalar_name, meter_value.avg, step)

    logger.synchronize_between_processes()
    print(header, logger)

    logger_metrics = {k: v.global_avg for k, v in logger.meters.items()}
    return logger_metrics


def evaluate(model, loader, args, writter=None, step=None):
    os.makedirs(args.img_folder, exist_ok=True)
    checkpoint_name = os.path.basename(args.checkpoint) or args.weights
    image_checkpoint_folder = os.path.join(args.img_folder, checkpoint_name)

    metrics = {}
    base_image_folder = os.path.join(image_checkpoint_folder, args.dataset)
    os.makedirs(base_image_folder, exist_ok=True)

    for n_cascades in args.n_cascades:
        for n_iters in args.n_iterations:

            config = f"{n_cascades}c_{n_iters}i"
            config_image_folder = os.path.join(base_image_folder, config)
            os.makedirs(config_image_folder, exist_ok=True)

            metrics[config] = _evaluate(
                model,
                args,
                loader,
                padder_mode=args.padder_type,
                header=f"{args.dataset} evaluation@ size:{args.eval_size} n_cascades:{n_cascades} n_iters:{n_iters}",
                batch_size=args.batch_size,
                writter=writter,
                step=step,
                iterations=n_iters,
                cascades=n_cascades,
                save_path=config_image_folder,
                save_images=args.save_images,
            )

    metric_log = []
    metric_log_dict = {}
    # print the final results
    for config in metrics:
        config_tokens = config.split("_")
        config_iters = config_tokens[1][:-1]
        config_cascades = config_tokens[0][:-1]

        metric_log_dict[config_cascades] = metric_log_dict.get(config_cascades, {})
        metric_log_dict[config_cascades][config_iters] = metrics[config]

        evaluation_str = f"{args.dataset} evaluation@ size:{args.eval_size} n_cascades:{config_cascades} recurrent_updates:{config_iters}"
        metrics_str = f"Metrics: {metrics[config]}"
        metric_log.extend([evaluation_str, metrics_str])

        print(evaluation_str)
        print(metrics_str)

    eval_log_name = f"{checkpoint_name.replace('.pth', '')}_eval.log"
    print("Saving eval log to: ", eval_log_name)
    with open(eval_log_name, "w") as f:
        f.write(f"Dataset: {args.dataset} @size: {args.eval_size}:\n")
        # write the dict line by line for each key, and each value in the keys
        for config_cascades in metric_log_dict:
            f.write("{\n")
            f.write(f"\t{config_cascades}: {{\n")
            for config_iters in metric_log_dict[config_cascades]:
                # convert every metric to 4 decimal places
                metrics = metric_log_dict[config_cascades][config_iters]
                metrics = {k: float(f"{v:.3f}") for k, v in metrics.items()}
                f.write(f"\t\t{config_iters}: {metrics}\n")
            f.write("\t},\n")
            f.write("}\n")


def load_checkpoint(args):
    utils.setup_ddp(args)

    if not args.weights:
        checkpoint = torch.load(args.checkpoint, map_location=torch.device("cpu"))
        if "model" in checkpoint:
            experiment_args = checkpoint["args"]
            model = torchvision.prototype.models.depth.stereo.__dict__[experiment_args.model](weights=None)
            model.load_state_dict(checkpoint["model"])
        else:
            model = torchvision.prototype.models.depth.stereo.__dict__[args.model](weights=None)
            model.load_state_dict(checkpoint)

        # set the appropiate devices
        if args.distributed and args.device == "cpu":
            raise ValueError("The device must be cuda if we want to run in distributed mode using torchrun")
        device = torch.device(args.device)
    else:
        model = torchvision.prototype.models.depth.stereo.__dict__[args.model](weights=args.weights)

    # convert to DDP if need be
    if args.distributed:
        model = model.to(args.device)
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
    else:
        model.to(device)

    return model


def main(args):
    model = load_checkpoint(args)
    loader = make_eval_loader(args.dataset, args)
    evaluate(model, loader, args)


if __name__ == "__main__":
    args = get_args_parser().parse_args()
    main(args)